Coordonnées polaires

Marc Lorenzi

24 juin 2025

1 Coordonnées polaires

1.1 Introduction

Définition 1. Soit $M=(x,y)\in\mathbb{R}^2$. Un couple de coordonnées polaires de M est un couple $(r, \theta) \in \mathbb{R}^2$ tel que $x = r \cos \theta$ et $y = r \sin \theta$.

Pour des raisons techniques, nous allons dans la suite nous restreindre à l'ouvert de

$$\Omega = \mathbb{R}^2 \setminus \{(x,0) : x < 0\}$$

L'avantage de se cantonner à Ω est d'avoir, sous certaines conditions sur r et θ , existence et unicité d'un couple de coordonnées polaires.

Proposition 1. Soit $(x,y) \in \Omega$. Il existe un unique couple $(r,\theta) \in \mathbb{R}_+^* \times]-\pi,\pi[$ tel $que(x,y) = (r\cos\theta, r\sin\theta).$

Démonstration. C'est un résultat classique du cours sur \mathbb{C} . \square

Nous poserons dorénavant

$$\Omega' = \mathbb{R}_+^* \times \left] - \pi, \pi \right[$$

L'application $\Phi: \Omega' \longrightarrow \Omega$ définie par $\Phi(r, \theta) = (r \cos \theta, r \sin \theta)$ est donc une bijection.

Proposition 2. Soit $(x,y) \in \Omega$. Soit $(r,\theta) = \Phi^{-1}(x,y)$. On a

$$r = \sqrt{x^2 + y^2}$$

$$\theta = 2 \arctan \frac{y}{r+x}$$

Démonstration. C'est immédiat pour r. Passons à θ . Posons $t = \tan \frac{\theta}{2}$. On a

$$x = r \cos \theta = r \frac{1 - t^2}{1 + t^2}$$

$$y = r \sin \theta = r \frac{2t}{1 + t^2}$$
(2)

$$y = r\sin\theta = r\frac{2t}{1+t^2} \tag{2}$$

De (1) on tire

$$t^2 = \frac{r - x}{r + x}$$

d'où

$$1 + t^2 = \frac{2r}{r + r} \tag{3}$$

L'égalité (2) s'écrit

$$(1+t^2)y = 2rt$$

ou encore, par (3),

$$\frac{2ry}{r+x} = 2rt$$

Ainsi,

$$t = \tan\frac{\theta}{2} = \frac{y}{r+x}$$

Comme $\theta/2 \in]-\pi/2,\pi/2[$, on en déduit le résultat. \square

1.2 Un difféomorphisme

Proposition 3. L'application $\Phi: \Omega' \longrightarrow \Omega$ est une bijection de classe C^1 .

Démonstration. Nous avons déjà vu la bijectivité. La classe \mathcal{C}^1 est immédiate. \square

Notons $x: \Omega' \longrightarrow \Omega$ et $y: \Omega' \longrightarrow \Omega$ les fonctions $(r, \theta) \longmapsto r \cos \theta$ et $(r, \theta) \longmapsto r \sin \theta$. La matrice des dérivées partielles de x et y par rapport à r et θ est

$$J = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}$$

Le déterminant de J est $r \neq 0$. Cette matrice est donc inversible. Son inverse est

$$J^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\frac{1}{r} \sin \theta & \frac{1}{r} \cos \theta \end{pmatrix}$$

Remarque. Les lettres x et y désignent deux choses : ce sont les coordonnées d'un point $(x,y) \in \Omega$. Mais ce sont aussi deux fonctions de Ω' vers Ω . De même, r et θ sont les coordonnées d'un point $(r,\theta) \in \Omega'$. Dans quelques secondes, ce seront aussi deux fonctions de Ω vers Ω' . Pour ne pas alourdir les notations, lorsque nous écrivons $\partial x/\partial r$, il faut comprendre que nous pensons à l'image du couple (r,θ) par la fonction $\partial x/\partial r$. Nous avons déjà suivi cette convention lorsque nous avons écrit la matrice J, qui est en réalité $J(r,\theta)$. Une façon simple de s'y retrouver est la suivante. Si nous écrivons $\partial y/\partial \theta$ c'est que y est la fonction et θ est la variable. Il faut en fait comprendre $\partial y/\partial \theta(r,\theta)$. En revanche, lorsque nous écrirons $\partial \theta/\partial y$, θ sera la fonction et y sera la variable, et cela voudra dire réellement $\partial \theta/\partial y(x,y)$.

Proposition 4. L'application $\Phi^{-1}: \Omega \longrightarrow \Omega'$ est de classe C^1 sur Ω .

Démonstration. Pour tout $(x,y) \in \Omega$, notons $\Phi^{-1}(x,y) = (r(x,y), \theta(x,y))$. Par la proposition 2,

$$r(x,y) = \sqrt{x^2 + y^2} \tag{4}$$

$$\theta(x,y) = 2 \arctan \frac{y}{r(x,y)+x}$$
 (5)

Les fonctions r et θ sont donc clairement de classe \mathcal{C}^1 . \square

1.3 Les dérivées partielles de r et θ

Pour tout $x, y \in \Omega$, $r(x, y) = \sqrt{x^2 + y^2}$. On a dono

$$\frac{\partial r}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{r} = \cos\theta \tag{6}$$

$$\frac{\partial r}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} = \frac{y}{r} = \sin\theta \tag{7}$$

Par la proposition 2

$$\theta(x,y) = 2 \arctan \frac{y}{r+x}$$

ou encore

$$\tan\frac{\theta}{2} = \frac{y}{r+x}$$

Remarquons que

$$1 + \tan^2 \frac{\theta}{2} = \frac{2r}{r+x} \tag{8}$$

Dérivons (8) par rapport à x. Souve nons-nous que $\partial r/\partial x=x/r$.

$$\frac{1}{2}\left(1+\tan^2\frac{\theta}{2}\right)\frac{\partial\theta}{\partial x} = -\frac{y}{(r+x)^2}\left(\frac{x}{r}+1\right)$$

ou encore

$$\frac{r}{r+x}\frac{\partial\theta}{\partial x} = -\frac{y}{(r+x)^2}\frac{x+r}{r}$$

et finalement

$$\frac{\partial \theta}{\partial x} = -\frac{y}{r^2} = -\frac{\sin \theta}{r} \tag{9}$$

Dérivons maintenant (8) pour obtenir la dérivée partielle de θ par rapport à y.

$$\frac{1}{2}\left(1+\tan^2\frac{\theta}{2}\right)\frac{\partial\theta}{\partial y} = \frac{(r+x)-y\frac{y}{r}}{(r+x)^2}$$
$$= \frac{r(r+x)-y^2}{r(r+x)^2}$$
$$= \frac{x(r+x)}{r(r+x)^2} = \frac{x}{r(r+x)}$$

ou encore

$$\frac{r}{r+x}\frac{\partial\theta}{\partial y} = \frac{x}{r(r+x)}$$

et finalement

$$\frac{\partial \theta}{\partial y} = \frac{x}{r^2} = \frac{\cos \theta}{r} \tag{10}$$

En appelant J' la matrice des dérivées partielles de r et θ nous avons donc

$$J' = \begin{pmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\frac{1}{r} \sin \theta & \frac{1}{r} \cos \theta \end{pmatrix}$$

D'une certaine façon, $J' = J^{-1}$. Plus rigoureusement, J' est une fonction de deux variables (x, y) alors que J est une fonction de deux variables (r, θ) . On a pour tout $(x, y) \in \Omega$,

$$J'(x,y) = J((r(x,y), \theta(x,y))^{-1})$$

1.4 Le gradient en coordonnées polaires

Soit $f: \Omega \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Soit $g: \Omega' \longrightarrow \mathbb{R}$ définie par $g = f \circ \Phi$. On a donc pour tout $(x, y) \in \Omega$,

$$f(x,y) = g(r(x,y), \theta(x,y))$$

Par la règle de la chaîne,

$$\begin{array}{ll} \frac{\partial f}{\partial x} & = & \frac{\partial g}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial g}{\partial \theta} \frac{\partial \theta}{\partial x} \\ & = & \cos \theta \frac{\partial g}{\partial r} - \frac{1}{r} \sin \theta \frac{\partial g}{\partial \theta} \end{array}$$

 et

$$\begin{array}{ll} \frac{\partial f}{\partial y} & = & \frac{\partial g}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial g}{\partial \theta} \frac{\partial \theta}{\partial y} \\ & = & \sin \theta \frac{\partial g}{\partial r} + \frac{1}{r} \cos \theta \frac{\partial g}{\partial \theta} \end{array}$$

De là,

$$\nabla f = \frac{\partial g}{\partial r}(\cos \theta, \sin \theta) + \frac{1}{r} \frac{\partial g}{\partial \theta}(-\sin \theta, \cos \theta)$$

Posons $u_r(r,\theta) = (\cos \theta, \sin \theta)$ et $u_\theta(r,\theta) = (-\sin \theta, \cos \theta)$. La famille (u_r, u_θ) est une base orthonormée directe de \mathbb{R}^2 . C'est ce que l'on appelle la base locale des coordonnées polaires. On a donc

$$\nabla f = \frac{\partial g}{\partial r} u_r + \frac{1}{r} \frac{\partial g}{\partial \theta} u_\theta \tag{11}$$

Remarque. La forme complète serait (beurk!)

$$\nabla f(x,y) = \frac{\partial g}{\partial r}(r(x,y),\theta(x,y))u_r(r(x,y),\theta(x,y)) + \frac{1}{r(x,y)}\frac{\partial g}{\partial \theta}(r(x,y),\theta(x,y))u_\theta(r(x,y),\theta(x,y))$$

2 Une équation aux dérivées partielles

À titre d'application, nous allons résoudre une équation aux dérivées partielles d'ordre 1. Soit $k \in \mathbb{R}^*$. Nous allons déterminer les fonctions U de classe \mathcal{C}^1 sur Ω telles que

pour tout $(x, y) \in \Omega$,

(E)
$$\nabla U(x,y) = -\frac{k}{(x^2 + y^2)^{3/2}}(x,y)$$

qui s'écrit plus simplement

(E)
$$\nabla U(x,y) = -\frac{ku_r}{x^2 + y^2}$$

Toute ressemblance avec un problème physique bien connu est évidemment purement fortuite.

Soit $U \in \mathcal{C}^1(\Omega)$. Soit

$$V = U \circ \Phi : \Omega' \longrightarrow \mathbb{R}$$

La fonction U est solution de (E) si et seulement si V est solution de

$$(E') \quad \frac{\partial V}{\partial r} u_r + \frac{1}{r} \frac{\partial V}{\partial \theta} u_\theta = -\frac{k}{r^2} u_r$$

c'est à dire, puisque (u_r, u_θ) est libre, si et seulement si

$$(E')$$
 $\frac{\partial V}{\partial r} = -\frac{k}{r^2}$ et $\frac{\partial V}{\partial \theta} = 0$

Une solution évidente de (E') est la fonction

$$V_0:(r,\theta)\longmapsto \frac{k}{r}$$

En posant $U_0 = V_0 \circ \Phi^{-1}$, U est solution de (E) si et seulement si $\nabla U = \nabla U_0$, ou encore $\nabla (U - U_0) = 0$.

Proposition 5. Soit $f: \Omega \longrightarrow \mathbb{R}$ une fonction de classe C^1 . On a $\nabla f = 0$ si et seulement si f est constante.

Démonstration. Si f est constante, on a évidemment $\nabla f = 0$. Inversement, supposons $\nabla f = 0$. Soit $M = (x, y) \in \Omega$. Soit A = (1, 0). Nous avons beaucoup de chance, parce que l'ouvert Ω est étoilé par rapport à A: le segment [A, M] est inclus dans Ω . Considérons la fonction $\varphi : [0, 1] \longrightarrow \Omega$ définie par

$$\varphi(t) = (1-t)\overrightarrow{OA} + t\overrightarrow{OM} = (1+t(x-1), ty)$$

La fonction φ est un paramétrage du segment [A, M]. Soit $g : [0, 1] \longrightarrow \mathbb{R}$ définie par $g = f \circ \varphi$. Par la règle de la chaîne, g est de classe \mathcal{C}^1 et pour tout $t \in [0, 1]$,

$$g'(t) = (x-1)\frac{\partial f}{\partial x}(\varphi(t)) + y\frac{\partial f}{\partial y}(\varphi(t))$$

Comme $\nabla f = 0$, g' = 0 et donc, g est constante. Remarquons que

$$q(0) = f(\varphi(0)) = f(A)$$

$$g(1) = f(\varphi(1)) = f(M)$$

Comme g(0) = g(1), on a donc f(M) = f(A). La fonction f est ainsi constante sur Ω , égale à f(A). \square

Nous avons donc résolu (E).

Proposition 6. Les solutions de (E) sont les fonctions $U:\Omega \longrightarrow \mathbb{R}$ définies pour tout $(x,y) \in \Omega$ par

$$U(x,y) = \frac{k}{\sqrt{x^2 + y^2}} + c$$

 $où c \in \mathbb{R}$.

Remarque. Notons $\Omega'' = \mathbb{R}^2 \setminus \{0\}$. Les fonctions U ci-dessus sont clairement solutions de (E) sur Ω'' . En fait, ce sont les seules mais notre technique de preuve pour l'unicité ne fonctionne plus : Ω'' n'est pas étoilé. En revanche, nous pouvons raisonner comme suit

Soit $f: \Omega'' \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 . Supposons que $\nabla f = 0$. On a a fortiori $\nabla f = 0$ sur Ω donc f est nulle sur Ω . Il reste à montrer que f est nulle sur $\{(x,0): x<0\}$. Soit x<0. Pour tout $\varepsilon>0$, $(x,\varepsilon)\in\Omega$ et donc $f(x,\varepsilon)=0$. Comme f est de classe \mathcal{C}^1 , elle est aussi continue. Lorsque ε tend vers 0, $0=f(x,\varepsilon)$ tend vers f(x,0). Ainsi, f(x,0)=0.

3 Une autre équation aux dérivées partielles

Résolvons l'équation aux dérivées partielles

$$(E) x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 0$$

d'inconnue $f \in \mathcal{C}^1(\Omega)$.

Soit $f \in \mathcal{C}^1(\Omega)$. Comme dans l'exemple précédent, posons $g = f \circ \Phi : \Omega' \longrightarrow \mathbb{R}$. On a donc pour tout $(x, y) \in \Omega$,

$$f(x,y) = g(r(x,y), \theta(x,y))$$

Par la règle de la chaîne,

$$\begin{array}{ll} \frac{\partial f}{\partial x} & = & \frac{\partial g}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial g}{\partial \theta} \frac{\partial \theta}{\partial x} \\ & = & \cos \theta \frac{\partial g}{\partial r} - \frac{1}{r} \sin \theta \frac{\partial g}{\partial \theta} \end{array}$$

et

$$\begin{array}{ll} \frac{\partial f}{\partial y} & = & \frac{\partial g}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial g}{\partial \theta} \frac{\partial \theta}{\partial y} \\ & = & \sin \theta \frac{\partial g}{\partial r} + \frac{1}{r} \cos \theta \frac{\partial g}{\partial \theta} \end{array}$$

De là,

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = r\cos\theta\frac{\partial f}{\partial x} + r\sin\theta\frac{\partial f}{\partial y}$$
$$= r\frac{\partial g}{\partial r}$$

Ainsi, f est solution de (E) si et seulement si pour tout $(r, \theta) \in \Omega'$,

$$r\frac{\partial g}{\partial r}(r,\theta) = 0$$

ou encore

$$(E') \ \frac{\partial g}{\partial r}(r,\theta) = 0$$

On laisse montrer en exercice que g est solution de (E') si et seulement si il existe $G:]-\pi,\pi[\longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 telle que pour tout $(r,\theta)\in \Omega',$

$$g(r,\theta) = G(\theta)$$

Les solutions de (E) sont donc les fonctions $f:\Omega \longrightarrow \mathbb{R}$ définies par

$$f(x,y) = G(\theta(x,y))$$