Les entiers relatifs

Marc Lorenzi

11 septembre 2022

1 L'ensemble \mathbb{Z}

1.1 Introduction

Nous allons dans cet article construire l'anneau \mathbb{Z} des entiers relatifs à partir de l'ensemble \mathbb{N} . Une approche consisterait à rajouter à \mathbb{N} une copie de \mathbb{N}^* qui serait l'ensemble des entiers négatifs. L'inconvénient de cette approche est qu'elle ne permet pas de définir de façon très jolie l'addition dans \mathbb{Z} . Nous allons ici adopter une autre approche.

1.2 Une relation d'équivalence

L'idée est que tout (futur) entier relatif n s'écrit n=a-b où a et b sont des entiers naturels. On ne peut pas représenter direct tement n par le couple (a,b), parce qu'il n'y a pas unicité. Étant donnés $a,b,c,d\in\mathbb{N}$, on a a-b=c-d si et seulement si a+d=b+c. Nous allons donc identifier les couples d'entiers naturels vérifiant cette dernière égalité.

Définition 1. On définit sur $E = \mathbb{N} \times \mathbb{N}$ la relation \simeq en posant pour tous $a, b, c, d \in \mathbb{N}$,

$$(a,b) \simeq (c,d) \iff a+d=b+c$$

Proposition 1. \simeq est une relation d'équivalence sur E.

Démonstration.

- Réflexivité. Soit $(a,b) \in E$. On a a+b=b+a, donc $(a,b) \simeq (a,b)$.
- Symétrie. Soient $(a,b), (c,d) \in E$. Supposons $(a,b) \simeq (c,d)$. On a a donc a+d=b+c, d'où c+b=d+a, c'est à dire $(c,d) \simeq (a,b)$.
- Transitivité. Soient $(a,b), (c,d), (e,f) \in E$. Supposons $(a,b) \simeq (c,d)$ et $(c,d) \simeq (e,f)$. On a a+d=b+c et c+f=e+d. De là, a+d+f=b+c+f=b+e+d et donc, en simplifiant par d, a+f=b+e. Ainsi, $(a,b) \simeq (e,f)$.

Définition 2. $\mathbb{Z} = E/\simeq$.

Les éléments de $\mathbb Z$ sont les entiers relatifs.

Un entier relatif est donc une classe d'équivalence modulo \simeq . Nous noterons $\langle a,b \rangle$ la classe d'équivalence du couple (a,b) pour la relation \simeq . On a ainsi

$$\mathbb{Z} = \{ \langle a, b \rangle : a, b \in \mathbb{N} \}$$

1.3 Une injection de \mathbb{N} dans \mathbb{Z}

Dans la suite de l'article, nous noterons $\varphi: \mathbb{N} \longrightarrow \mathbb{Z}$ l'application définie par

$$\forall n \in \mathbb{N}, \varphi(n) = \langle n, 0 \rangle$$

Proposition 2. φ est injective.

Démonstration. Soient $m, n \in \mathbb{N}$. Supposons $\varphi(m) = \varphi(n)$. On a donc < m, 0 > = < n, 0 >, c'est à dire m + 0 = 0 + n, d'où m = n. \square

2 Addition

2.1 La définition

Définition 3. Pour tous entiers relatifs $\langle a, b \rangle$ et $\langle c, d \rangle$, on pose

$$< a, b > + < c, d > = < a + c, b + d >$$

Il convient de vérifier que notre définition de l'addition dépend bien des classes modulo \simeq et pas de leurs représentants. Donnons-nous $a, a', b, b', c, c', d, d' \in \mathbb{N}$. Supposons $(a, b) \simeq (a', b')$ et $(c, d) \simeq (c', d')$. On a alors

$$(a+c) + (b'+d') = (a+b') + (c+d') = (a'+b) + (c'+d) = (a'+c') + (b+d)$$

Ainsi,

$$(a + c, b + d) \simeq (a' + c', b' + d')$$

Nous venons donc de définir une addition dans \mathbb{Z} . Nous allons maintenant montrer que cette addition possède toutes les propriétés algébriques souhaitées.

L'entier relatif <0,0> va jouer un rôle important dans la suite. Notons-le 0. Remarquons que pour tout $a\in\mathbb{N},\,a+0=a+0$ et donc

$$< a, a > = 0$$

2.2 Propriétés

Proposition 3. Pour tout $n \in \mathbb{Z}$, n + 0 = 0.

Démonstration. Soit $n = \langle a, b \rangle \in \mathbb{Z}$. On a

$$n+0 = \langle a, b \rangle + \langle 0, 0 \rangle$$

= $\langle a+0, b+0 \rangle$
= $\langle a, b \rangle$
= n

Proposition 4. Pour tous $m, n \in \mathbb{Z}$, m + n = n + m.

Démonstration. Soient $m = \langle a, b \rangle$ et $n = \langle c, d \rangle$ deux entiers relatifs. On a

$$\begin{array}{rcl} m+n & = & < a,b> + < c,d> \\ & = & < a+c,b+d> \\ & = & < c+a,d+b> \\ & = & < c,d> + < a,b> \\ & = & n+m \end{array}$$

Proposition 5. Pour tous $m, n, p \in \mathbb{Z}$, (m+n) + p = m + (n+p).

Démonstration. Soient $m = \langle a, b \rangle$, $n = \langle c, d \rangle$ et $p = \langle e, f \rangle$ trois entiers relatifs. On a

$$\begin{array}{rcl} (m+n)+p & = & < a+c, b+d> + < e, f> \\ & = & < (a+c)+e, (b+d)+f> \\ & = & < a+(c+e), b+(d+f)> \\ & = & < a, b> + < c+e, d+f> \\ & = & m+(n+p) \end{array}$$

Proposition 6. Pour tout $m \in \mathbb{Z}$, il existe $n \in \mathbb{Z}$ tel que m + n = 0.

Démonstration. Soit $m = \langle a, b \rangle \in \mathbb{Z}$. Soit $n = \langle b, a \rangle$. On a

$$m + n = \langle a + b, b + a \rangle = \langle 0, 0 \rangle = 0$$

Corollaire 7. $(\mathbb{Z}, +)$ est un groupe abélien.

Démonstration. Ceci résulte des propositions précédentes. \square

2.3 Le morphisme φ

Proposition 8. Pour tous $a, b \in \mathbb{N}$, $\varphi(a+b) = \varphi(a) + \varphi(b)$.

Démonstration. Soient $a, b \in \mathbb{N}$. On a

$$\varphi(a+b) = \langle a+b, 0 \rangle = \langle a, 0 \rangle + \langle b, 0 \rangle = \varphi(a) + \varphi(b)$$

Proposition 9. Soit $n \in \mathbb{Z}$. On est dans un et un seul des trois cas suivants.

- n = 0.
- Il existe un unique $c \in \mathbb{N}^*$ tel que $n = \varphi(c)$.
- Il existe un unique $c \in \mathbb{N}^*$ tel que $n = -\varphi(c)$.

Démonstration. L'unicité de a résulte de l'injectivité de φ . Soient $c, c' \in \mathbb{N}$. Supposons $\varphi(c) = -\varphi(c')$. On a alors

$$\varphi(c+c') = \varphi(c) + \varphi(c') = 0$$

et donc, par l'injectivité de φ , c+c'=0. Comme $c,c'\in\mathbb{N}$, il en résulte que c=c'=0. Le fait que les trois cas s'excluent mutuellement en découle facilement.

Il reste à prouver l'existence. Soit n=< a,b> un entier relatif. Si $a\geq b,$ il existe $c\in\mathbb{N}$ tel que a=b+c. De là,

$$n = < b + c, b > = < c, 0 > = \varphi(c)$$

Si $a \leq b$, il existe $c \in \mathbb{N}$ tel que b = a + c. De là,

$$n = \langle a, a + c \rangle = \langle 0, c \rangle = -\varphi(c)$$

2.4 Inclusion de $\mathbb N$ dans $\mathbb Z$

Dorénavant, si $n \in \mathbb{N}$, nous identifierons l'entier naturel n et l'entier relatif < n, 0 >. Avec cette identification, par la proposition précédente, tous les entiers relatifs sont de la forme $\pm n$ où $n \in \mathbb{N}$. Remarquons qu'avec notre identification, on a pour tous $a, b \in \mathbb{N}$,

$$< a, b > = < a, 0 > + < 0, b > = a - b$$

On a ainsi pour tous $a, b, c, d \in \mathbb{N}$,

$$\langle a, b \rangle = \langle c, d \rangle \iff a - b = c - d$$

où a-b et c-d sont des entiers relatifs.

Notons que

$$\mathbb{Z} = \{a - b : a, b \in \mathbb{N}\}\$$

La proposition précédente devient, avec l'identification :

Proposition 10. Soit $n \in \mathbb{Z}$. On est dans un et un seul des trois cas suivants.

- n = 0.
- $n \in \mathbb{N}^*$.
- \bullet $-n \in \mathbb{N}^*$

On a donc aussi

$$\mathbb{Z} = \{-n : n \in \mathbb{N}^*\} \cup \{0\} \cup \mathbb{N}^*$$

et les trois ensembles ci-dessus sont disjoints.

3 Multiplication

3.1 La définition

Définition 4. Pour tous entiers relatifs $\langle a, b \rangle$ et $\langle c, d \rangle$, on pose

$$\langle a, b \rangle \langle c, d \rangle = \langle ac + bd, ad + bc \rangle$$

Il convient de vérifier que notre définition de l'addition dépend bien des classes modulo \simeq et pas de leurs représentants. Donnons-nous $a,a',b,b',c,c',d,d'\in\mathbb{N}$. Supposons $(a,b)\simeq(a',b')$ et $(c,d)\simeq(c',d')$.

• Cas 1, $a \ge b$ et $c \ge d$. De a + b' = a' + b, on déduit a - b = a' - b'. De même, c - d = c' - d'. Ainsi,

$$(a-b)(c-d) = (a'-b')(c'-d')$$

En développant, il vient

$$ac + bd - (ad + bc) = a'c' + b'd' - (a'd' + b'c')$$

d'où

$$(ac + bd) + (a'd' + b'c') = (a'c' + b'd') + (ad + bc)$$

Ainsi,

$$(ac+bd,ad+bc) \simeq (a'c'+b'd',a'd'+b'c')$$

• Cas 2, $a \ge b$ et $c \le d$. On a cette fois ci a-b=a'-b' et d-c=d'-c'. De là,

$$(a-b)(d-c) = (a'-b')(d'-c')$$

En développant, il vient

$$ad + bc - (ac + bd) = a'd' + b'c' - (a'c' + b'd')$$

d'où

$$(ad + bc) + (a'c' + b'd') = (a'd' + b'c') + (ac + bd)$$

Ainsi,

$$(ac+bd, ad+bc) \simeq (a'c'+b'd', a'd'+b'c')$$

• Les deux derniers cas se traitent de la même manière.

Nous venons donc de définir une multiplication dans \mathbb{Z} . Nous allons maintenant montrer que cette multiplication possède toutes les propriétés algébriques souhaitées.

3.2 Propriétés

Posons 1 = <1, 0>.

Proposition 11. Pour tout $n \in \mathbb{Z}$, $n \times 1 = n$.

Démonstration. Soit $n = \langle a, b \rangle$ un entier relatif. On a

$$\begin{array}{rcl} n \times 1 & = & < a, b > < 1, 0 > \\ & = & < a \times 1 + b \times 0, a \times 0 + b \times 1 > \\ & = & < a, b > \\ & = & n \end{array}$$

Proposition 12. Pour tous $m, n \in \mathbb{Z}$, mn = nm.

Démonstration. Soient $m = \langle a, b \rangle$ et $n = \langle c, d \rangle$ deux entiers relatifs. On

$$mn = \langle ac + bd, ad + bc \rangle$$

= $\langle ca + db, cb + da \rangle$

Proposition 13. Pour tous $m, n, p \in \mathbb{Z}$, (mn)p = m(np).

Démonstration. Soient $m = \langle a, b \rangle$, $n = \langle c, d \rangle$ et $p = \langle e, f \rangle$ trois entiers relatifs. On a

$$(mn)p = \langle ac + bd, ad + bc \rangle \langle e, f \rangle$$

 $= \langle (ac + bd)e + (ad + bc)f, (ac + bd)f + (ad + bc)e \rangle$
 $= \langle a(ce + df) + b(cf + de), a(cf + de) + b(ce + df) \rangle$
 $= \langle a, b \rangle \langle ce + df, cf + de \rangle$
 $= m(np)$

Proposition 14. Pour tous $m, n, p \in \mathbb{Z}$, m(n+p) = mn + mp.

Démonstration. Soient $m = \langle a, b \rangle$, $n = \langle c, d \rangle$ et $p = \langle e, f \rangle$ trois entiers relatifs. On a

$$\begin{array}{lll} m(n+p) & = & < a,b > < c+e,d+f > \\ & = & < a(c+e) + b(d+f), a(d+f) + b(c+e) > \\ & = & < (ac+bd) + (ae+bf), (ad+bc) + (af+be) > \\ & = & < ac+bd, ad+bc > + < ae+bf, af+be > \\ & = & mn+mp \end{array}$$

Corollaire 15. $(\mathbb{Z}, +, \times)$ est un anneau commutatif.

Démonstration. Ceci résulte des propositions précédentes. \square

3.3 Le morphisme φ

Proposition 16. Pour tous $a, b \in \mathbb{N}$, $\varphi(ab) = \varphi(a)\varphi(b)$.

Démonstration. Soient $a, b \in \mathbb{N}$. On a

$$\varphi(a)\varphi(b) = \langle a, 0 \rangle \langle b, 0 \rangle = \langle ab, 0 \rangle = \varphi(ab)$$

L'identification que nous avons faite en égalant, pour tout $a \in \mathbb{N}$, l'entier naturel a et l'entier relatif < a, 0>, est donc toujours la bienvenue. Remarquons que nous avons aussi $\varphi(1) = < 1, 0> = 1$. Ainsi, φ est un morphisme injectif du semi-anneau \mathbb{N} vers l'anneau \mathbb{Z} .

3.4 Intégrité

Proposition 17. \mathbb{Z} est un anneau intègre.

Démonstration. Soient m et n deux entiers relatifs. Supposons que mn = 0.

- Cas 1, $m, n \in \mathbb{N}$. Le produit mn est aussi le produit des entiers naturels m et n dans \mathbb{N} donc, par les propriétés de la multiplication dans \mathbb{N} , m = 0 ou n = 0.
- Cas 2, $m \in \mathbb{N}$ et $-n \in \mathbb{N}$. On a alors -mn = m(-n) = 0, d'où m = 0 ou -n = 0, c'est à dire m = 0 ou n = 0.
- Les deux cas restants se traitent de la même façon.

4 Un ordre sur \mathbb{Z}

4.1 Introduction

La construction de l'anneau intègre $(\mathbb{Z}, +, \times)$ est maintenant terminée. Nous pouvons oublier comment \mathbb{Z} a été construit et retenir que

$$\mathbb{Z} = \mathcal{N} \cup \{0\} \cup \mathcal{P}$$

où $\mathcal{P} = \mathbb{N}^*$ et $\mathcal{N} = \{-n : n \in \mathbb{N}^*\}$ et les opérations dans \mathcal{P} coïncident avec les opérations usuelles dans \mathbb{N} . Remarquons que les ensembles \mathcal{N} , $\{0\}$ et \mathbb{N}^* sont disjoints. En effet, si $a, b \in \mathbb{N}$ et a = -b, alors a + b = 0. Ceci est aussi une égalité dans \mathbb{N} , donc a = b = 0.

Nous allons voir comment ceci permet de définir l'ordre usuel \leq sur $\mathbb Z$ et de montrer les principales propriétés de cette relation.

4.2 La définition

Définition 5. Soient $m, n \in \mathbb{N}$. On pose

$$m \le n \iff n - m \in \mathbb{N}$$

Remarquons que cette relation prolonge l'ordre usuel dans \mathbb{N} . Si $a, b \in \mathbb{N}$, alors $a \leq b$ en tant qu'entiers naturels si et seulement si il existe $c \in \mathbb{N}$ tel que b = a + c. Cela revient à dire que l'entier relatif c = b - a est un entier naturel.

4.3 Propriétés

Proposition 18. $\leq est \ un \ ordre \ total \ sur \ \mathbb{Z}.$

Démonstration.

- Réflexivité. Soit $n \in \mathbb{N}$. On a $n-n=0 \in \mathbb{N}$ donc $n \leq n$.
- Antisymétrie. Soient $m, n \in \mathbb{N}$. Supposons $m \le n$ et $n \le m$. On a donc Notons p = n m. On a $p \in \mathbb{N}$ et $-p \in \mathbb{N}$, donc p = 0, c'est à dire m = n.
- Transitivité. Soient $m, n, p \in \mathbb{N}$. Supposons $m \leq n$ et $n \leq p$. On a alors

$$p - m = (p - n) + (n - m)$$

La somme de deux éléments de $\mathbb N$ étant encore dans $\mathbb N$, on en déduit que

$$p - m \in \mathbb{N}$$

c'est à dire que $m \leq p$.

• Totalité. Soient $m, n \in \mathbb{N}$. Soit p = n - m. Si $p \in \mathbb{N}$, alors $m \le n$. Sinon, $-p \in \mathbb{N}$, et donc $m - n \in \mathbb{N}$, c'est à dire $n \le m$. Ainsi, l'ordre est total.

Définition 6. Pour tous $m, n \in \mathbb{Z}$, on pose

$$m < n \iff m \le n \text{ et } m \ne n$$

Proposition 19. Pour tous $m, n, p \in \mathbb{N}$, $m < n \implies m + p < n + p$.

Démonstration. Soient $m, n, p \in \mathbb{Z}$. Supposons m < n. On a alors

$$(n+p) - (m+p) = n - m \in \mathbb{N}^*$$

et donc m + p < n + p. \square

Proposition 20. Pour tous $m, n, p \in \mathbb{N}$ tels que p > 0, $m < n \implies mp < np$.

Démonstration. Soient $m, n, p \in \mathbb{Z}$. Supposons p > 0 et m < n. On a donc $n - m \in \mathbb{N}^*$ et $p \in \mathbb{N}^*$. De là

$$np - mp = (n - m)p \in \mathbb{N}^*$$

et donc mp < np. \square

Proposition 21. Pour tous $m, n \in \mathbb{Z}$,

- $\bullet \ m < n \iff m+1 \le n.$
- $\bullet \ m \le n \iff m < n+1.$

Démonstration.

• On a

$$m < n \iff n - m \in \mathbb{N}^* \iff n - m - 1 \in \mathbb{N} \iff m + 1 \le n$$

• On a

$$m \le n \iff n - m \in \mathbb{N} \iff n + 1 - m \in \mathbb{N}^* \iff m < n + 1$$

4.4 Parties de \mathbb{Z}

Proposition 22. Toute partie de \mathbb{Z} non vide et minorée possède un plus petit élément.

Démonstration. Soit $A\subseteq\mathbb{Z}$. Supposons A non vide et minorée par un entier p. Considérons

$$B = \{n - p : n \in A\}$$

L'ensemble B est une partie de $\mathbb N$ non vide et minorée. B possède donc un plus petit élément b. Facilement, b+p est le plus petit élément de A. \square

Proposition 23. Toute partie de \mathbb{Z} non vide et majorée possède un plus grand élément.

Démonstration. Soit $A\subseteq\mathbb{Z}$. Supposons A non vide et majorée par un entier p. Considérons

$$B = \{-n : n \in A\}$$

L'ensemble B est une partie de \mathbb{Z} non vide et minorée par -p. B possède donc un plus petit élément b. Facilement, -b est le plus petit élément de A. \square