Théorème des valeurs intermédiaires.

Soient $a, b \in \mathbb{R}$ tels que a < b. Soit $f \in C^0([a, b])$ telle que f(a) < 0 et f(b) > 0. Il existe $c \in [a, b]$ tel que f(c) = 0.

Nous allons donner deux preuves de ce théorème. La première preuve construit deux suites adjacentes qui convergent vers un tel réel c.

Démonstration 1. On construit par récurrence sur n deux suites $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ d'éléments de [a,b] vérifiant pour tout $n\in\mathbb{N}$ la propriété

$$P(n) \begin{cases} a_n & \leq b_n & (1) \\ f(a_n) & \leq 0 & (2) \\ f(b_n) & \geq 0 & (3) \\ b_n - a_n & = \frac{b - a}{2^n} & (4) \end{cases}$$

On pose $a_0 = a$ et $b_0 = b$. On a clairement P(0).

Soit $n \in \mathbb{N}$. Supposons donnés $a_n, b_n \in [a, b]$ vérifiant P(n). Soit $c_n = \frac{1}{2}(a_n + b_n)$. On a ainsi $a_n \le c_n \le b_n$ et donc $c_n \in [a, b]$.

- Si $f(c_n) \leq 0$, posons $a_{n+1} = c$ et $b_{n+1} = b_n$.
- Sinon, posons $a_{n+1} = a_n$ et $b_{n+1} = c_n$.

On a clairement $a_{n+1}, b_{n+1} \in [a, b]$. Les propriétés (1), (2), (3) de P(n+1) sont également évidentes. De plus,

$$b_{n+1} - a_{n+1} = \frac{1}{2}(b_n - a_n) = \frac{b-a}{2^{n+1}}$$

Montrons que la suite $(a_n)_{n\in\mathbb{N}}$ est croissante. Soit $n\in\mathbb{N}$.

• Si $f(a_n) < 0$, alors

$$a_{n+1} - a_n = c_n - a_n = \frac{1}{2}(a_n + b_n) - a_n = \frac{1}{2}(b_n - a_n) \ge 0$$

• Si $f(a_n) > 0$, alors

$$a_{n+1} - a_n = a_n - a_n = 0 \ge 0$$

La suite $(a_n)_{n\in\mathbb{N}}$ est donc croissante. De même, la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante. Remarquons enfin que

$$b_n - a_n = \frac{b-a}{2^n} \underset{n \to \infty}{\longrightarrow} 0$$

Les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont donc adjacentes. Elles convergent ainsi vers une même limite que nous noterons c.

Remarquons que par la monotonie de ces suites, on a pour tout $n \in \mathbb{N}$, $a_n \leq c \leq b_n$. En particulier, pour n = 0, on obtient $a \leq c \leq b$. La fonction f est donc continue en c. Par la caractérisation séquentielle des limites, $f(a_n)$ tend vers f(c) lorsque n tend vers l'infini. Or, pour tout $n \in \mathbb{N}$, $f(a_n) \leq 0$. Par passage à la limite dans les inégalités larges, il vient $f(c) \leq 0$. En faisant de même avec la suite $(b_n)_{n \in \mathbb{N}}$, on obtient $f(c) \geq 0$. Ainsi, f(c) = 0. \square

La deuxième preuve considère un certain ensemble E. On montre que la borne supérieure c de E vérifie f(c) = 0.

Démonstration 2. Soit $E = \{x \in [a, b], f(x) \le 0\}.$

L'ensemble E est une partie de \mathbb{R} . On a $a \in E$, donc $E \neq \emptyset$. De plus, E est majoré par b. E possède donc une borne supérieure que nous noterons c. Remarquons que, puisque $a \in E$ et b majore E, $c \in [a,b]$ et donc f est continue en c.

• Montrons tout d'abord que c < b.

La fonction f est continue en b et f(b) > 0. Appliquons la définition de la continuité en b avec $\varepsilon = \frac{1}{2}f(b)$: il existe $\alpha > 0$ tel que pour tout $x \in [a, b]$,

$$|x-b| \le \alpha \implies |f(x) - f(b)| \le \frac{1}{2}f(b)$$

De là, pour tout $x \in [a, b]$, si $x \in [b - \alpha, b]$ alors

$$f(x) \ge f(b) - \varepsilon = \frac{1}{2}f(b) > 0$$

Ainsi, f > 0 sur $[b - \alpha, b]$ et donc $E \subset [a, b - \alpha]$. De là, $b - \alpha$ majore E, donc c, qui est le plus petit majorant de E, vérifie $c \leq b - \alpha < b$.

- Montrons maintenant que $f(c) \geq 0$. Comme $a \leq c < b$, pour tout n entier assez grand, on a $a \leq c + \frac{1}{n} \leq b$. f étant continue en c, le théorème de caractérisation séquentielle des limites montre que $f\left(c + \frac{1}{n}\right)$ tend vers f(c) lorsque n tend vers l'infini. Or, $c + \frac{1}{n} \notin E$, donc $f\left(c + \frac{1}{n}\right) > 0$. Par passage à la limite dans les inégalités, $f(c) \geq 0$.
- Montrons enfin que $f(c) \leq 0$. Comme $c = \sup E$ est le plus petit majorant de E, pour tout $n \geq 1$, $c \frac{1}{n}$ ne majore pas E. Il existe donc $x_n \in E$ tel que $c \frac{1}{n} < x_n \leq c$. Par le théorème d'encadrement, x_n tend vers c lorsque n tend vers l'infini. La fonction f est continue en c donc, par caractérisation séquentielle, $f(x_n)$ tend vers f(c) lorsque n tend vers l'infini. Or, $x_n \in E$ donc $f(x_n) \leq 0$. Par passage à la limite dans les inégalités, $f(c) \leq 0$. \square