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perfect cube, or a power of 2, etc. For this reason, the
second problem belongs to combinatorics. The answer
is not known. If the answer turns out to be yes, then it
will show that, in a sense, the number theory in the first
problem was an illusion and that all that really mattered
was the rough rate of growth of the sequence of squares.

2.8 Theoretical Computer Science

This branch of mathematics is described at considerable
length in part IV, so we shall be brief here. Broadly speak-
ing, theoretical computer science is concerned with effi-
ciency of computation, meaning the amounts of various
resources, such as time and computer memory, needed
to perform given computational tasks. There are math-
ematical models of computation that allow one to study
questions about computational efficiency in great gen-
erality without having to worry about precise details
of how algorithms are implemented. Thus, theoretical
computer science is a genuine branch of pure mathe-
matics: in theory, one could be an excellent theoretical
computer scientist and be unable to program a com-
puter. However, it has had many notable applications as
well, especially to cryptography (see mathematics and
cryptography [VII.7] for more on this).

2.9 Probability

There are many phenomena, from biology and eco-
nomics to computer science and physics, that are so
complicated that instead of trying to understand them
in complete detail one tries to make probabilistic state-
ments instead. For example, if you wish to analyze how
a disease is likely to spread, you cannot hope to take
account of all the relevant information (such as who will
come into contact with whom) but you can build a math-
ematical model and analyze it. Such models can have
unexpectedly interesting behavior with direct practical
relevance. For example, it may happen that there is a
“critical probability”p with the following property: if the
probability of infection after contact of a certain kind is
above p then an epidemic may very well result, whereas
if it is below p then the disease will almost certainly
die out. A dramatic difference in behavior like this is
called a phase transition. (See probabilistic models of
critical phenomena [IV.26] for further discussion.)

Setting up an appropriate mathematical model can be
surprisingly difficult. For example, there are physical cir-
cumstances where particles travel in what appears to be
a completely random manner. Can one make sense of
the notion of a random continuous path? It turns out

that one can—the result is the elegant theory of brown-
ian motion [IV.25]—but the proof that one can is highly
sophisticated, roughly speaking because the set of all
possible paths is so complex.

2.10 Mathematical Physics

The relationship between mathematics and physics has
changed profoundly over the centuries. Up to the eigh-
teenth century there was no sharp distinction drawn
between mathematics and physics, and many famous
mathematicians could also be regarded as physicists,
at least some of the time. During the nineteenth cen-
tury and the beginning of the twentieth century this
situation gradually changed, until by the middle of the
twentieth century the two disciplines were very sepa-
rate. And then, toward the end of the twentieth cen-
tury, mathematicians started to find that ideas that had
been discovered by physicists had huge mathematical
significance.

There is still a big cultural difference between the two
subjects: mathematicians are far more interested in find-
ing rigorous proofs, whereas physicists, who use math-
ematics as a tool, are usually happy with a convincing
argument for the truth of a mathematical statement,
even if that argument is not actually a proof. The result
is that physicists, operating under less stringent con-
straints, often discover fascinating mathematical phe-
nomena long before mathematicians do.

Finding rigorous proofs to back up these discoveries is
often extremely hard: it is far more than a pedantic exer-
cise in certifying the truth of statements that no physi-
cist seriously doubted. Indeed, it often leads to further
mathematical discoveries. The articles vertex opera-
tor algebras [IV.13], mirror symmetry [IV.14], gen-
eral relativity and the einstein equations [IV.17],
and operator algebras [IV.19] describe some fasci-
nating examples of how mathematics and physics have
enriched each other.

I.2 The Language and Grammar of
Mathematics

1 Introduction

It is a remarkable phenomenon that children can learn
to speak without ever being consciously aware of the
sophisticated grammar they are using. Indeed, adults
too can live a perfectly satisfactory life without ever
thinking about ideas such as parts of speech, subjects,
predicates, or subordinate clauses. Both children and
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adults can easily recognize ungrammatical sentences,
at least if the mistake is not too subtle, and to do this
it is not necessary to be able to explain the rules that
have been violated. Nevertheless, there is no doubt that
one’s understanding of language is hugely enhanced by
a knowledge of basic grammar, and this understanding
is essential for anybody who wants to do more with
language than use it unreflectingly as a means to a
nonlinguistic end.

The same is true of mathematical language. Up to a
point, one can do and speak mathematics without know-
ing how to classify the different sorts of words one is
using, but many of the sentences of advanced mathemat-
ics have a complicated structure that is much easier to
understand if one knows a few basic terms of mathemat-
ical grammar. The object of this section is to explain the
most important mathematical “parts of speech,” some
of which are similar to those of natural languages and
others quite different. These are normally taught right
at the beginning of a university course in mathematics.
Much of The Companion can be understood without a
precise knowledge of mathematical grammar, but a care-
ful reading of this article will help the reader who wishes
to follow some of the later, more advanced parts of the
book.

The main reason for using mathematical grammar is
that the statements of mathematics are supposed to be
completely precise, and it is not possible to achieve com-
plete precision unless the language one uses is free of
many of the vaguenesses and ambiguities of ordinary
speech. Mathematical sentences can also be highly com-
plex: if the parts that made them up were not clear and
simple, then the unclarities would rapidly accumulate
and render the sentences unintelligible.

To illustrate the sort of clarity and simplicity that is
needed in mathematical discourse, let us consider the
famous mathematical sentence “Two plus two equals
four” as a sentence of English rather than of mathemat-
ics, and try to analyze it grammatically. On the face of it,
it contains three nouns (“two,” “two,” and “four”), a verb
(“equals”) and a conjunction (“plus”). However, looking
more carefully we may begin to notice some oddities.
For example, although the word “plus” resembles the
word “and,” the most obvious example of a conjunction,
it does not behave in quite the same way, as is shown
by the sentence “Mary and Peter love Paris.” The verb in
this sentence, “love,” is plural, whereas the verb in the
previous sentence, “equals,” was singular. So the word
“plus” seems to take two objects (which happen to be
numbers) and produce out of them a new, single object,

while “and” conjoins “Mary” and “Peter” in a looser way,
leaving them as distinct people.

Reflecting on the word “and” a bit more, one finds that
it has two very different uses. One, as above, is to link
two nouns, whereas the other is to join two whole sen-
tences together, as in “Mary likes Paris and Peter likes
New York.” If we want the basics of our language to be
absolutely clear, then it will be important to be aware
of this distinction. (When mathematicians are at their
most formal, they simply outlaw the noun-linking use
of “and”—a sentence such as “3 and 5 are prime num-
bers” is then paraphrased as “3 is a prime number and
5 is a prime number.”)

This is but one of many similar questions: anybody
who has tried to classify all words into the standard
eight parts of speech will know that the classification is
hopelessly inadequate. What, for example, is the role of
the word “six” in the sentence “This section has six sub-
sections”? Unlike “two” and “four” earlier, it is certainly
not a noun. Since it modifies the noun “subsection” it
would traditionally be classified as an adjective, but it
does not behave like most adjectives: the sentences “My
car is not very fast” and “Look at that tall building” are
perfectly grammatical, whereas the sentences “My car
is not very six” and “Look at that six building” are not
just nonsense but ungrammatical nonsense. So do we
classify adjectives further into numerical adjectives and
nonnumerical adjectives? Perhaps we do, but then our
troubles will be only just beginning. For example, what
about possessive adjectives such as “my” and “your”? In
general, the more one tries to refine the classification of
English words, the more one realizes how many different
grammatical roles there are.

2 Four Basic Concepts

Another word that famously has three quite distinct
meanings is “is.” The three meanings are illustrated in
the following three sentences.

(1) 5 is the square root of 25.
(2) 5 is less than 10.
(3) 5 is a prime number.

In the first of these sentences, “is” could be replaced
by “equals”: it says that two objects, 5 and the square
root of 25, are in fact one and the same object, just as
it does in the English sentence “London is the capital of
the United Kingdom.” In the second sentence, “is” plays a
completely different role. The words “less than 10” form
an adjectival phrase, specifying a property that numbers
may or may not have, and “is” in this sentence is like “is”
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in the English sentence “Grass is green.” As for the third
sentence, the word “is” there means “is an example of,”
as it does in the English sentence “Mercury is a planet.”

These differences are reflected in the fact that the sen-
tences cease to resemble each other when they are writ-
ten in a more symbolic way. An obvious way to write
(1) is 5 =

√
25. As for (2), it would usually be written

5 < 10, where the symbol “<” means “is less than.” The
third sentence would normally not be written symboli-
cally because the concept of a prime number is not quite
basic enough to have universally recognized symbols
associated with it. However, it is sometimes useful to
do so, and then one must invent a suitable symbol. One
way to do it would be to adopt the convention that if n
is a positive integer, then P(n) stands for the sentence
“n is prime.” Another way, which does not hide the word
“is,” is to use the language of sets.

2.1 Sets

Broadly speaking, a set is a collection of objects, and in
mathematical discourse these objects are mathematical
ones such as numbers, points in space, or even other
sets. If we wish to rewrite sentence (3) symbolically,
another way to do it is to define P to be the collection,
or set, of all prime numbers. Then (3) can be rewritten,
“5 belongs to the set P .” This notion of belonging to a set
is sufficiently basic to deserve its own symbol, and the
symbol used is “∈.” So a fully symbolic way of writing
the sentence is 5 ∈ P .

The members of a set are usually called its elements,
and the symbol “∈” is usually read “is an element of.”
So the “is” of sentence (3) is more like “∈” than “=.”
Although one cannot directly substitute the phrase “is
an element of” for “is,” one can do so if one is prepared
to modify the rest of the sentence a little.

There are three common ways to denote a specific
set. One is to list its elements inside curly brackets:
{2,3,5,7,11,13,17,19}, for example, is the set whose
elements are the eight numbers 2, 3, 5, 7, 11, 13, 17,
and 19. The majority of sets considered by mathemati-
cians are too large for this to be feasible—indeed, they
are often infinite—so a second way to denote sets is
to use dots to imply a list that is too long to write
down: for example, the expressions {1,2,3, . . . ,100} and
{2,4,6,8, . . . } can be used to represent the set of all pos-
itive integers up to 100 and the set of all positive even
numbers, respectively. A third way, and the way that
is most important, is to define a set via a property : an
example that shows how this is done is the expression
{x : x is prime and x < 20}. To read an expression such

as this, one first reads the opening curly bracket as “The
set of.” Next, one reads the symbol that occurs before
the colon. The colon itself one reads as “such that.”
Finally, one reads what comes after the colon, which is
the property that determines the elements of the set. In
this instance, we end up saying, “The set of x such that
x is prime and x is less than 20,” which is in fact equal
to the set {2,3,5,7,11,13,17,19} considered earlier.

Many sentences of mathematics can be rewritten in
set-theoretic terms. For example, sentence (2) earlier
could be written as 5 ∈ {n : n < 10}. Often there is
no point in doing this (as here, where it is much eas-
ier to write 5 < 10) but there are circumstances where
it becomes extremely convenient. For example, one of
the great advances in mathematics was the use of Carte-
sian coordinates to translate geometry into algebra and
the way this was done was to define geometrical objects
as sets of points, where points were themselves defined
as pairs or triples of numbers. So, for example, the
set {(x,y) : x2 + y2 = 1} is (or represents) a circle
of radius 1 with its center at the origin (0,0). That is
because, by the Pythagorean theorem, the distance from
(0,0) to (x,y) is

√
x2 +y2, so the sentence “x2 +y2 =

1” can be reexpressed geometrically as “the distance
from (0,0) to (x,y) is 1.” If all we ever cared about was
which points were in the circle, then we could make do
with sentences such as “x2 + y2 = 1,” but in geometry
one often wants to consider the entire circle as a single
object (rather than as a multiplicity of points, or as a
property that points might have), and then set-theoretic
language is indispensable.

A second circumstance where it is usually hard to do
without sets is when one is defining new mathematical
objects. Very often such an object is a set together with
a mathematical structure imposed on it, which takes
the form of certain relationships among the elements
of the set. For examples of this use of set-theoretic lan-
guage, see sections 1 and 2, on number systems and alge-
braic structures, respectively, in some fundamental
mathematical definitions [I.3].

Sets are also very useful if one is trying to do meta-
mathematics, that is, to prove statements not about
mathematical objects but about the process of mathe-
matical reasoning itself. For this it helps a lot if one can
devise a very simple language—with a small vocabulary
and an uncomplicated grammar—into which it is in prin-
ciple possible to translate all mathematical arguments.
Sets allow one to reduce greatly the number of parts of
speech that one needs, turning almost all of them into
nouns. For example, with the help of the membership
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symbol “∈” one can do without adjectives, as the trans-
lation of “5 is a prime number” (where “prime” functions
as an adjective) into “5 ∈ P” has already suggested.1

This is of course an artificial process—imagine replac-
ing “roses are red” by “roses belong to the set R”—but
in this context it is not important for the formal language
to be natural and easy to understand.

2.2 Functions

Let us now switch attention from the word “is” to some
other parts of the sentences (1)–(3), focusing first on
the phrase “the square root of” in sentence (1). If we
wish to think about this phrase grammatically, then we
should analyze what sort of role it plays in a sentence,
and the analysis is simple: in virtually any mathemati-
cal sentence where the phrase appears, it is followed by
the name of a number. If the number is n, then this pro-
duces the slightly longer phrase, “the square root of n,”
which is a noun phrase that denotes a number and plays
the same grammatical role as a number (at least when
the number is used as a noun rather than as an adjec-
tive). For instance, replacing “5” by “the square root of
25” in the sentence “5 is less than 7” yields a new sen-
tence, “The square root of 25 is less than 7,” that is still
grammatically correct (and true).

One of the most basic activities of mathematics is to
take a mathematical object and transform it into another
one, sometimes of the same kind and sometimes not.
“The square root of” transforms numbers into numbers,
as do “four plus,” “two times,” “the cosine of,” and “the
logarithm of.” A nonnumerical example is “the center of
gravity of,” which transforms geometrical shapes (pro-
vided they are not too exotic or complicated to have a
center of gravity) into points—meaning that if S stands
for a shape, then “the center of gravity of S” stands for
a point. A function is, roughly speaking, a mathematical
transformation of this kind.

It is not easy to make this definition more precise. To
ask, “What is a function?” is to suggest that the answer
should be a thing of some sort, but functions seem to
be more like processes. Moreover, when they appear in
mathematical sentences they do not behave like nouns.
(They are more like prepositions, though with a defi-
nite difference that will be discussed in the next subsec-
tion.) One might therefore think it inappropriate to ask
what kind of object “the square root of” is. Should one
not simply be satisfied with the grammatical analysis
already given?

1. For another discussion of adjectives see arithmetic geometry
[IV.6 §3.1].

As it happens, no. Over and over again, throughout
mathematics, it is useful to think of a mathematical phe-
nomenon, which may be complex and very un-thinglike,
as a single object. We have already seen a simple exam-
ple: a collection of infinitely many points in the plane
or space is sometimes better thought of as a single geo-
metrical shape. Why should one wish to do this for func-
tions? Here are two reasons. First, it is convenient to be
able to say something like, “The derivative of sin is cos,”
or to speak in general terms about some functions being
differentiable and others not. More generally, functions
can have properties, and in order to discuss those prop-
erties one needs to think of functions as things. Second,
many algebraic structures are most naturally thought of
as sets of functions. (See, for example, the discussion
of groups and symmetry in [I.3 §2.1]. See also hilbert
spaces [III.37], function spaces [III.29], and vector
spaces [I.3 §2.3].)

If f is a function, then the notation f(x) = y means
that f turns the object x into the object y . Once one
starts to speak formally about functions, it becomes
important to specify exactly which objects are to be sub-
jected to the transformation in question, and what sort
of objects they can be transformed into. One of the main
reasons for this is that it makes it possible to discuss
another notion that is central to mathematics, that of
inverting a function. (See [I.4 §1] for a discussion of why
it is central.) Roughly speaking, the inverse of a function
is another function that undoes it, and that it undoes; for
example, the function that takes a number n to n− 4 is
the inverse of the function that takes n to n+ 4, since if
you add four and then subtract four, or vice versa, you
get the number you started with.

Here is a function f that cannot be inverted. It takes
each number and replaces it by the nearest multiple
of 100, rounding up if the number ends in 50. Thus,
f(113) = 100, f(3879) = 3900, and f(1050) = 1100.
It is clear that there is no way of undoing this process
with a function g. For example, in order to undo the
effect of f on the number 113 we would need g(100)
to equal 113. But the same argument applies to every
number that is at least as big as 50 and smaller than
150, and g(100) cannot be more than one number at
once.

Now let us consider the function that doubles a num-
ber. Can this be inverted? Yes it can, one might say: just
divide the number by two again. And much of the time
this would be a perfectly sensible response, but not, for
example, if it was clear from the context that the num-
bers being talked about were positive integers. Then one
might be focusing on the difference between even and
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odd numbers, and this difference could be encapsulated
by saying that odd numbers are precisely those numbers
n for which the equation 2x = n does not have a solu-
tion. (Notice that one can undo the doubling process by
halving. The problem here is that the relationship is not
symmetrical: there is no function that can be undone
by doubling, since you could never get back to an odd
number.)

To specify a function, therefore, one must be careful
to specify two sets as well: the domain, which is the set
of objects to be transformed, and the range, which is the
set of objects they are allowed to be transformed into. A
function f from a set A to a set B is a rule that specifies,
for each element x of A, an element y = f(x) of B. (Not
every element of the range needs to be used: consider
once again the example of “two times” when the domain
and range are both the set of all positive integers.)

The following symbolic notation is used. The expres-
sion f : A → B means that f is a function with domain
A and range B. If we then write f(x) = y , we know that
x must be an element of A and y must be an element
of B. Another way of writing f(x) = y that is sometimes
more convenient is f : x "→ y . (The bar on the arrow is
to distinguish it from the arrow in f : A → B, which has
a very different meaning.)

If we want to undo the effect of a function f : A → B,
then we can, as long as we avoid the problem that
occurred with the approximating function discussed
earlier. That is, we can do it if f(x) and f(x′) are dif-
ferent whenever x and x′ are different elements of A. If
this condition holds, then f is called an injection. On the
other hand, if we want to find a function g that is undone
by f , then we can do so as long as we avoid the problem
of the integer-doubling function. That is, we can do it if
every elementy of B is equal to f(x) for some elementx
of A (so that we have the option of setting g(y) = x). If
this condition holds, then f is called a surjection. If f
is both an injection and a surjection, then f is called a
bijection. Bijections are precisely the functions that have
inverses.

It is important to realize that not all functions have
tidy definitions. Here, for example, is the specification
of a function from the positive integers to the positive
integers: f(n) = n if n is a prime number, f(n) = k if
n is of the form 2k for an integer k greater than 1, and
f(n) = 13 for all other positive integersn. This function
has an unpleasant, arbitrary definition but it is neverthe-
less a perfectly legitimate function. Indeed, “most” func-
tions, though not most functions that one actually uses,
are so arbitrary that they cannot be defined. (Such func-
tions may not be useful as individual objects, but they

are needed so that the set of all functions from one set
to another has an interesting mathematical structure.)

2.3 Relations

Let us now think about the grammar of the phrase “less
than” in sentence (2). As with “the square root of,” it
must always be followed by a mathematical object (in
this case a number again). Once we have done this we
obtain a phrase such as “less than n,” which is impor-
tantly different from “the square root of n” because it
behaves like an adjective rather than a noun, and refers
to a property rather than an object. This is just how
prepositions behave in English: look, for example, at
the word “under” in the sentence “The cat is under the
table.”

At a slightly higher level of formality, mathematicians
like to avoid too many parts of speech, as we have
already seen for adjectives. So there is no symbol for
“less than”: instead, it is combined with the previous
word “is” to make the phrase “is less than,” which is
denoted by the symbol “<.” The grammatical rules for
this symbol are once again simple. To use “<” in a sen-
tence, one should precede it by a noun and follow it
by a noun. For the resulting grammatically correct sen-
tence to make sense, the nouns should refer to numbers
(or perhaps to more general objects that can be put in
order). A mathematical “object” that behaves like this is
called a relation, though it might be more accurate to call
it a potential relationship. “Equals” and “is an element
of” are two other examples of relations.

As with functions, it is important, when specifying
a relation, to be careful about which objects are to be
related. Usually a relation comes with a set A of objects
that may or may not be related to each other. For exam-
ple, the relation “<” might be defined on the set of all
positive integers, or alternatively on the set of all real
numbers; strictly speaking these are different relations.
Sometimes relations are defined with reference to two
sets A and B. For example, if the relation is “∈,” then A
might be the set of all positive integers and B the set of
all sets of positive integers.

There are many situations in mathematics where one
wishes to regard different objects as “essentially the
same,” and to help us make this idea precise there is
a very important class of relations known as equiva-
lence relations. Here are two examples. First, in elemen-
tary geometry one sometimes cares about shapes but
not about sizes. Two shapes are said to be similar if
one can be transformed into the other by a combina-
tion of reflections, rotations, translations, and enlarge-
ments (see figure 1); the relation “is similar to” is an
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Figure 1 Similar shapes.

equivalence relation. Second, when doing arithmetic
modulo m [III.61], one does not wish to distinguish
between two whole numbers that differ by a multiple
ofm: in this case one says that the numbers are congru-
ent (mod m); the relation “is congruent (mod m) to” is
another equivalence relation.

What exactly is it that these two relations have in com-
mon? The answer is that they both take a set (in the first
case the set of all geometrical shapes, and in the sec-
ond the set of all whole numbers) and split it into parts,
called equivalence classes, where each part consists of
objects that one wishes to regard as essentially the same.
In the first example, a typical equivalence class is the
set of all shapes that are similar to some given shape;
in the second, it is the set of all integers that leave a
given remainder when you divide by m (for example, if
m = 7 then one of the equivalence classes is the set
{. . . ,−16,−9,−2,5,12,19, . . . }).

An alternative definition of what it means for a rela-
tion ∼, defined on a set A, to be an equivalence relation
is that it has the following three properties. First, it is
reflexive, which means that x ∼ x for every x in A. Sec-
ond, it is symmetric, which means that if x and y are
elements of A and x ∼ y , then it must also be the case
that y ∼ x. Third, it is transitive, meaning that if x, y ,
and z are elements of A such that x ∼ y and y ∼ z,
then it must be the case that x ∼ z. (To get a feel for
these properties, it may help if you satisfy yourself that
the relations “is similar to” and “is congruent (mod m)
to” both have all three properties, while the relation “<,”
defined on the positive integers, is transitive but neither
reflexive nor symmetric.)

One of the main uses of equivalence relations is to
make precise the notion of quotient [I.3 §3.3] construc-
tions.

2.4 Binary Operations

Let us return to one of our earlier examples, the sentence
“Two plus two equals four.” We have analyzed the word
“equals” as a relation, an expression that sits between
the noun phrases “two plus two” and “four” and makes
a sentence out of them. But what about “plus”? That also
sits between two nouns. However, the result, “two plus
two,” is not a sentence but a noun phrase. That pattern is
characteristic of binary operations. Some familiar exam-
ples of binary operations are “plus,” “minus,” “times,”
“divided by,” and “raised to the power.”

As with functions, it is customary, and convenient, to
be careful about the set to which a binary operation is
applied. From a more formal point of view, a binary oper-
ation on a setA is a function that takes pairs of elements
of A and produces further elements of A from them. To
be more formal still, it is a function with the set of all
pairs (x,y) of elements of A as its domain and with A
as its range. This way of looking at it is not reflected in
the notation, however, since the symbol for the opera-
tion comes between x and y rather than before them:
we write x +y rather than +(x,y).

There are four properties that a binary operation may
have that are very useful if one wants to manipulate sen-
tences in which it appears. Let us use the symbol ∗ to
denote an arbitrary binary operation on some set A. The
operation ∗ is said to be commutative if x ∗y is always
equal to y ∗ x, and associative if x ∗ (y ∗ z) is always
equal to (x ∗y)∗ z. For example, the operations “plus”
and “times” are commutative and associative, whereas
“minus,” “divided by,” and “raised to the power” are nei-
ther (for instance, 9− (5− 3) = 7 while (9− 5)− 3 = 1).
These last two operations raise another issue: unless the
setA is chosen carefully, they may not always be defined.
For example, if one restricts one’s attention to the posi-
tive integers, then the expression 3− 5 has no meaning.
There are two conventions one could imagine adopting
in response to this. One might decide not to insist that
a binary operation should be defined for every pair of
elements of A, and to regard it as a desirable extra prop-
erty of an operation if it is defined everywhere. But the
convention actually in force is that binary operations do
have to be defined everywhere, so that “minus,” though
a perfectly good binary operation on the set of all inte-
gers, is not a binary operation on the set of all positive
integers.

An element e of A is called an identity for ∗ if e∗x =
x∗e = x for every elementx ofA. The two most obvious
examples are 0 and 1, which are identities for “plus” and
“times,” respectively. Finally, if ∗ has an identity e and
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x belongs to A, then an inverse for x is an element y
such that x ∗y = y ∗x = e. For example, if ∗ is “plus”
then the inverse of x is −x, while if ∗ is “times” then
the inverse is 1/x.

These basic properties of binary operations are fun-
damental to the structures of abstract algebra. See four
important algebraic structures [I.3 §2] for further
details.

3 Some Elementary Logic

3.1 Logical Connectives

A logical connective is the mathematical equivalent of a
conjunction. That is, it is a word (or symbol) that joins
two sentences to produce a new one. We have already
discussed an example, namely “and” in its sentence-
linking meaning, which is sometimes written by the sym-
bol “∧,” particularly in more formal or abstract mathe-
matical discourse. If P and Q are statements (note here
the mathematical habit of representing not just num-
bers but any objects whatsoever by single letters), then
P ∧Q is the statement that is true if and only if both P
and Q are true.

Another connective is the word “or,” a word that has
a more specific meaning for mathematicians than it
has for normal speakers of the English language. The
mathematical use is illustrated by the tiresome joke of
responding, “Yes please,” to a question such as, “Would
you like your coffee with or without sugar?” The symbol
for “or,” if one wishes to use a symbol, is “∨,” and the
statement P ∨Q is true if and only if P is true or Q is
true. This is taken to include the case when they are both
true, so “or,” for mathematicians, is always the so-called
inclusive version of the word.

A third important connective is “implies,” which is
usually written “⇒.” The statement P ⇒ Q means,
roughly speaking, that Q is a consequence of P , and is
sometimes read as “if P then Q.” However, as with “or,”
this does not mean quite what it would in English. To
get a feel for the difference, consider the following even
more extreme example of mathematical pedantry. At the
supper table, my young daughter once said, “Put your
hand up if you are a girl.” One of my sons, to tease her,
put his hand up on the grounds that, since she had not
added, “and keep it down if you are a boy,” his doing so
was compatible with her command.

Something like this attitude is taken by mathemati-
cians to the word “implies,” or to sentences containing
the word “if.” The statement P ⇒ Q is considered to be
true under all circumstances except one: it is not true if P
is true andQ is false. This is the definition of “implies.” It

can be confusing because in English the word “implies”
suggests some sort of connection between P andQ, that
P in some way causes Q or is at least relevant to it. If P
causesQ then certainly P cannot be true withoutQ being
true, but all a mathematician cares about is this logical
consequence and not whether there is any reason for it.
Thus, if you want to prove that P ⇒ Q, all you have to do
is rule out the possibility that P could be true andQ false
at the same time. To give an example: if n is a positive
integer, then the statement “n is a perfect square with
final digit 7” implies the statement “n is a prime num-
ber,” not because there is any connection between the
two but because no perfect square ends in a 7. Of course,
implications of this kind are less interesting mathemat-
ically than more genuine-seeming ones, but the reward
for accepting them is that, once again, one avoids being
confused by some of the ambiguities and subtle nuances
of ordinary language.

3.2 Quantifiers

Yet another ambiguity in the English language is ex-
ploited by the following old joke that suggests that our
priorities need to be radically rethought.

(4) Nothing is better than lifelong happiness.
(5) But a cheese sandwich is better than nothing.
(6) Therefore, a cheese sandwich is better than life-

long happiness.

Let us try to be precise about how this play on words
works (a good way to ruin any joke, but not a tragedy in
this case). It hinges on the word “nothing,” which is used
in two different ways. The first sentence means “There
is no single thing that is better than lifelong happiness,”
whereas the second means “It is better to have a cheese
sandwich than to have nothing at all.” In other words,
in the second sentence, “nothing” stands for what one
might call the null option, the option of having nothing,
whereas in the first it does not (to have nothing is not
better than to have lifelong happiness).

Words like “all,” “some,” “any,” “every,” and “nothing”
are called quantifiers, and in the English language they
are highly prone to this kind of ambiguity. Mathemati-
cians therefore make do with just two quantifiers, and
the rules for their use are much stricter. They tend to
come at the beginning of sentences, and can be read
as “for all” (or “for every”) and “there exists” (or “for
some”). A rewriting of sentence (4) that renders it unam-
biguous (and much less like a real English sentence)
is

(4′) For all x, lifelong happiness is better than x.
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The second sentence cannot be rewritten in these
terms because the word “nothing” is not playing the role
of a quantifier. (Its nearest mathematical equivalent is
something like the empty set, that is, the set with no
elements.)

Armed with “for all” and “there exists,” we can be
clear about the difference between the beginnings of the
following sentences.

(7) Everybody likes at least one drink, namely water.
(8) Everybody likes at least one drink; I myself go for

red wine.

The first sentence makes the point (not necessarily cor-
rectly) that there is one drink that everybody likes,
whereas the second claims merely that we all have some-
thing we like to drink, even if that something varies from
person to person. The precise formulations that capture
the difference are as follows.

(7′) There exists a drink D such that, for every person
P , P likes D.

(8′) For every person P there exists a drinkD such that
P likes D.

This illustrates an important general principle: if you
take a sentence that begins “for every x there exists y
such that . . . ” and interchange the two parts so that it
now begins “there exists y such that, for every x, . . . ,”
then you obtain a much stronger statement, since y is
no longer allowed to depend on x. If the second state-
ment is still true—that is, if you really can choose a y
that works for all the x at once—then the first statement
is said to hold uniformly.

The symbols ∀ and ∃ are often used to stand for
“for all” and “there exists,” respectively. This allows us
to write quite complicated mathematical sentences in a
highly symbolic form if we want to. For example, sup-
pose we let P be the set of all primes, as we did earlier.
Then the following symbols make the claim that there
are infinitely many primes, or rather a slightly different
claim that is equivalent to it.

(9) ∀n ∃m (m > n) ∧ (m ∈ P).

In words, this says that for every n we can find some
m that is both bigger than n and a prime. If we wish to
unpack sentence (6) further, we could replace the part
m ∈ P by

(10) ∀a,b ab =m ⇒ ((a = 1) ∨ (b = 1)).

There is one final important remark to make about the
quantifiers “∀” and “∃.” I have presented them as if they

were freestanding, but actually a quantifier is always
associated with a set (one says that it quantifies over that
set). For example, sentence (10) would not be a transla-
tion of the sentence “m is prime” if a and b were allowed
to be fractions: if a = 3 and b = 7

3 then ab = 7 with-
out either a or b equaling 1, but this does not show that
7 is not a prime. Implicit in the opening symbols ∀a,b
is the idea that a and b are intended to be positive inte-
gers. If this had not been clear from the context, then we
could have used the symbol N (which stands for the set
of all positive integers) and started sentence (10) with
∀a,b ∈ N instead.

3.3 Negation

The basic idea of negation in mathematics is very sim-
ple: there is a symbol, “¬,” which means “not,” and if P
is any mathematical statement, then ¬P stands for the
statement that is true if and only if P is not true. How-
ever, this is another example of a word that has a slightly
more restricted meaning to mathematicians than it has
in ordinary speech.

To illustrate this phenomenon once again, let us take
A to be a set of positive integers and ask ourselves what
the negation is of the sentence “Every number in the set
A is odd.” Many people when asked this question will
suggest, “Every number in the set A is even.” However,
this is wrong: if one thinks carefully about what exactly
would have to happen for the first sentence to be false,
one realizes that all that is needed is that at least one
number in A should be even. So in fact the negation of
the sentence is, “There exists a number inA that is even.”

What explains the temptation to give the first, incor-
rect answer? One possibility emerges when one writes
the sentence more formally, thus:

(11) ∀n ∈ A n is odd.

The first answer is obtained if one negates just the last
part of this sentence, “n is odd”; but what is asked for
is the negation of the whole sentence. That is, what is
wanted is not

(12) ∀n ∈ A ¬(n is odd),

but rather

(13) ¬(∀n ∈ A n is odd),

which is equivalent to

(14) ∃n ∈ A n is even.
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A second possible explanation is that one is inclined (for
psycholinguistic reasons) to think of the phrase “every
element of A” as denoting something like a single, typ-
ical element of A. If that comes to have the feel of a
particular number n, then we may feel that the negation
of “n is odd” is “n is even.” The remedy is not to think
of the phrase “every element of A” on its own: it should
always be part of the longer phrase, “for every element
of A.”

3.4 Free and Bound Variables

Suppose we say something like, “At time t the speed of
the projectile is v .” The letters t and v stand for real
numbers, and they are called variables, because in the
back of our mind is the idea that they are changing.
More generally, a variable is any letter used to stand for
a mathematical object, whether or not one thinks of that
object as changing through time. Let us look once again
at the formal sentence that said that a positive integer
m is prime:

(10) ∀a,b ab =m ⇒ ((a = 1) ∨ (b = 1)).

In this sentence, there are three variables, a, b, and m,
but there is a very important grammatical and semantic
difference between the first two and the third. Here are
two results of that difference. First, the sentence does
not really make sense unless we already know whatm is
from the context, whereas it is important that a and b do
not have any prior meaning. Second, while it makes per-
fect sense to ask, “For which values ofm is sentence (10)
true?” it makes no sense at all to ask, “For which values
of a is sentence (10) true?” The letterm in sentence (10)
stands for a fixed number, not specified in this sentence,
while the letters a and b, because of the initial∀a,b, do
not stand for numbers—rather, in some way they search
through all pairs of positive integers, trying to find a pair
that multiply together to give m. Another sign of the
difference is that you can ask, “What number ism?” but
not, “What number is a?” A fourth sign is that the mean-
ing of sentence (10) is completely unaffected if one uses
different letters for a and b, as in the reformulation

(10′) ∀c,d cd =m ⇒ ((c = 1) ∨ (d = 1)).

One cannot, however, change m to n without establish-
ing first that n denotes the same integer as m. A vari-
able such asm, which denotes a specific object, is called
a free variable. It sort of hovers there, free to take any
value. A variable like a and b, of the kind that does
not denote a specific object, is called a bound variable,
or sometimes a dummy variable. (The word “bound”

is used mainly when the variable appears just after a
quantifier, as in sentence (10).)

Yet another indication that a variable is a dummy
variable is when the sentence in which it occurs can
be rewritten without it. For example, the notation∑100
n=1 f(n) is shorthand for f(1)+f(2)+· · ·+f(100),

and the second way of writing it does not involve the
letter n, so n was not really standing for anything in
the first way. Sometimes, actual elimination is not pos-
sible, but one feels it could be done in principle. For
instance, the sentence “For every real number x, x is
either positive, negative, or zero” is a bit like putting
together infinitely many sentences such as “t is either
positive, negative, or zero,” one for each real number t,
none of which involve a variable.

4 Levels of Formality

It is a surprising fact that a small number of set-theo-
retic concepts and logical terms can be used to provide
a precise language that is versatile enough to express
all the statements of ordinary mathematics. There are
some technicalities to sort out, but even these can often
be avoided if one allows not just sets but also numbers
as basic objects. However, if you look at a well-written
mathematics paper, then much of it will be written not
in symbolic language peppered with symbols such as
∀ and ∃, but in what appears to be ordinary English.
(Some papers are written in other languages, particularly
French, but English has established itself as the interna-
tional language of mathematics.) How can mathemati-
cians be confident that this ordinary English does not
lead to confusion, ambiguity, and even incorrectness?

The answer is that the language typically used is a
careful compromise between fully colloquial English,
which would indeed run the risk of being unacceptably
imprecise, and fully formal symbolism, which would be
a nightmare to read. The ideal is to write in as friendly
and approachable a way as possible, while making sure
that the reader (who, one assumes, has plenty of experi-
ence and training in how to read mathematics) can see
easily how what one writes could be made more for-
mal if it became important to do so. And sometimes it
does become important: when an argument is difficult
to grasp it may be that the only way to convince oneself
that it is correct is to rewrite it more formally.

Consider, for example, the following reformulation of
the principle of mathematical induction, which underlies
many proofs:

(15) Every nonempty set of positive integers has a least
element.
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If we wish to translate this into a more formal lan-
guage we need to strip it of words and phrases such
as “nonempty” and “has.” But this is easily done. To say
that a set A of positive integers is nonempty is simply
to say that there is a positive integer that belongs to A.
This can be stated symbolically:

(16) ∃n ∈ N n ∈ A.

What does it mean to say that A has a least element?
It means that there exists an element x of A such that
every element y of A is either greater than x or equal to
x itself. This formulation is again ready to be translated
into symbols:

(17) ∃x ∈ A ∀y ∈ A (y > x) ∨ (y = x).

Statement (15) says that (16) implies (17) for every set A
of positive integers. Thus, it can be written symbolically
as follows:

(18) ∀A ⊂ N

[(∃n ∈ N n ∈ A)
⇒ (∃x ∈ A ∀y ∈ A (y > x) ∨ (y = x))].

Here we have two very different modes of presentation
of the same mathematical fact. Obviously (15) is much
easier to understand than (18). But if, for example, one
is concerned with the foundations of mathematics, or
wishes to write a computer program that checks the
correctness of proofs, then it is better to work with a
greatly pared-down grammar and vocabulary, and then
(18) has the advantage. In practice, there are many dif-
ferent levels of formality, and mathematicians are adept
at switching between them. It is this that makes it pos-
sible to feel completely confident in the correctness of
a mathematical argument even when it is not presented
in the manner of (18)—though it is also this that allows
mistakes to slip through the net from time to time.

I.3 Some Fundamental Mathematical
Definitions

The concepts discussed in this article occur throughout
so much of modern mathematics that it would be inap-
propriate to discuss them in part III—they are too basic.
Many later articles will assume at least some acquain-
tance with these concepts, so if you have not met them,
then reading this article will help you to understand
significantly more of the book.

1 The Main Number Systems

Almost always, the first mathematical concept that a
child is exposed to is the idea of numbers, and num-
bers retain a central place in mathematics at all levels.
However, it is not as easy as one might think to say
what the word “number” means: the more mathemat-
ics one learns, the more uses of this word one comes
to know, and the more sophisticated one’s concept of
number becomes. This individual development parallels
a historical development that took many centuries (see
from numbers to number systems [II.1]).

The modern view of numbers is that they are best
regarded not individually but as parts of larger wholes,
called number systems; the distinguishing features of
number systems are the arithmetical operations—such
as addition, multiplication, subtraction, division, and
extraction of roots—that can be performed on them.
This view of numbers is very fruitful and provides a
springboard into abstract algebra. The rest of this sec-
tion gives a brief description of the five main number
systems.

1.1 The Natural Numbers

The natural numbers, otherwise known as the positive
integers, are the numbers familiar even to young chil-
dren: 1, 2, 3, 4, and so on. It is the natural numbers that
we use for the very basic mathematical purpose of count-
ing. The set of all natural numbers is usually denoted
N.

Of course, the phrase “1, 2, 3, 4, and so on” does not
constitute a formal definition, but it does suggest the
following basic picture of the natural numbers, one that
we tend to take for granted.

(i) Given any natural number n there is another, n+1,
that comes next—known as the successor of n.

(ii) A list that starts with 1 and follows each number
by its successor will include every natural number
exactly once and nothing else.

This picture is encapsulated by the peano axioms
[III.69].

Given two natural numbersm andn one can add them
together or multiply them, obtaining in each case a new
natural number. By contrast, subtraction and division
are not always possible. If we want to give meaning to
expressions such as 8 − 13 or 5

7 , then we must work in
a larger number system.


