Exercice 1. Soit $n \geq 2$. On munit $\Omega = [1, n]$ de la probabilité \mathbb{P} uniforme.

- 1. Pour tout diviseur p de n, on note A_p l'ensemble des éléments de Ω divisibles par p. Déterminer $\mathbb{P}(A_p)$.
- 2. Soient p_1, \ldots, p_k les diviseurs premiers de n. Montrer que les événements A_{p_i} , $i = 1, \ldots, k$ sont indépendants.
- 3. En déduire une formule donnant $\varphi(n)$, le cardinal de l'ensemble des éléments de Ω premiers avec n

Exercice 2. Soient A et B deux événements d'un espace probabilisé $(\Omega, \mathfrak{T}, \mathbb{P})$.

1. On pose $\alpha = \mathbb{P}(A \cap B)$, $\beta = \mathbb{P}(A \cap \overline{B})$, $\gamma = \mathbb{P}(\overline{A} \cap B)$ et $\delta = \mathbb{P}(\overline{A} \cap \overline{B})$. Exprimer α , β , γ et δ en fonction de $\mathbb{P}(A)$, $\mathbb{P}(B)$ et $\mathbb{P}(A \cap B)$. En déduire que

$$\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B) = \alpha\delta - \beta\gamma$$

2. En remarquant que $\delta = 1 - \alpha - \beta - \gamma$, montrer que $\alpha \delta - \beta \gamma \le \alpha (1 - \alpha)$ et en déduire que

$$\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B) \le \frac{1}{4}$$

3. Le résultat de la question précédente est vrai quels que soient A et B. Appliquer ce résultat à \overline{A} et B et montrer que

$$\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B) \ge -\frac{1}{4}$$

4. Quand a-t-on égalité dans les deux questions précédentes?

Exercice 3. Soit $n \geq 1$. On munit l'univers $\Omega = \mathcal{P}_n(\llbracket 1, 2n \rrbracket)$ de la probabilité uniforme \mathbb{P} . Soit $X : \Omega \longrightarrow \mathbb{R}$ définie par $X(A) = \max A$.

- 1. Quel est l'ensemble des valeurs prises par X?
- 2. Déterminer la loi de X.
- 3. Déterminer l'espérance de X. On pourra admettre (ou montrer) que pour tous entiers n,p tels que $0 \le n \le p$, on a

$$\sum_{k=n}^{p} \binom{k}{n} = \binom{p+1}{n+1}$$

On remarquera que lorsque n tend vers l'infini, $\mathbb{E}(X) \sim 2n$.

4. Si vous êtes courageux, calculez $\mathbb{V}(X)$.

On remarquera que lorsque n tend vers l'infini, $\mathbb{V}(X)$ tend vers 2.

Exercice 4. Soient p et q deux entiers naturels non nuls tels que p > q.

1. On considère des *chemins* joignant des points de \mathbb{N}^2 et formés de déplacements successifs. Les seuls déplacements autorisés à partir du point (m, n) sont le passage de (m, n) à (m + 1, n) et le passage de (m, n) à (m, n + 1).

On note Δ la droite d'équation y = x.

- (a) Pour $a, b, m, n \in \mathbb{N}$, combien y a-t-il de chemins différents allant de (a, b) à (a + m, b + n)?
- (b) Montrer, en utilisant une symétrie par rapport à la droite Δ , que le nombre de chemins allant de (1,0) à (p,q) et qui rencontrent la droite Δ est égal au nombre de chemins de (0,1) à (p,q).
- (c) En déduire que le nombre de chemins de (0,0) à (p,q) qui ne rencontrent Δ qu'en (0,0) est

$$\binom{p+q-1}{p-1} - \binom{p+q-1}{p}$$

2. Dans un scrutin il y a p bulletins pour le candidat A et q bulletins pour le candidat B. Calculer la probabilité que le candidat A soit toujours en tête lors du dépouillement.

Exercice 5. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ définie par f(0) = 0 et, pour tout x > 0, $f(x) = -x \ln x$. On pourra abusivement convenir d'écrire que $0 \ln 0 = 0$.

Soit $(\Omega, \mathfrak{T}, \mathbb{P})$ un espace probabilisé. Soit $X : \Omega \longrightarrow E$ une variable aléatoire à valeurs dans un ensemble fini E de cardinal $N \ge 1$. On appelle *entropie* de X le réel

$$H(X) = \sum_{x \in E} f(\mathbb{P}(X = x))$$

- 1. (a) Calculer H(X) lorsque X est constante.
 - (b) Calculer H(X) lorsque X suit une loi uniforme.
- 2. (a) Montrer que pour tout $x \ge 0$, $f(x) \le 1 x$. Dans quel cas a-t-on égalité?
 - (b) En déduire que

$$\sum_{x \in E} f(N\mathbb{P}(X=x))) \leq 0$$

- (c) En déduire une majoration de H(X).
- 3. (a) Pour quelles variables aléatoires l'entropie est-elle minimale?
 - (b) Pour quelles variables aléatoires l'entropie est-elle maximale?
- 4. Soient $X: \Omega \longrightarrow E$ et $Y: \Omega \longrightarrow F$ deux variables aléatoires à valeurs dans des ensembles finis E et F. Soit $Z=(X,Y): \Omega \longrightarrow E \times F$. Montrer que si X et Y sont indépendantes, alors

$$H(Z) = H(X) + H(Y)$$

La réciproque est vraie, mais elle est plus difficile à prouver.