Exercice 1. Calculer pour les permutations ci-dessous : leur décomposition en produit de cycles de supports disjoints, une décomposition en produit de transpositions, leur ordre, leur inverse, leur signature.

- 1. $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 3 & 7 & 6 & 5 & 1 & 10 & 9 & 2 & 8 \end{pmatrix}$
- 2. $\sigma = (1\ 2\ 3)(2\ 3\ 4)(3\ 4\ 5)(4\ 5\ 6)$
- 3. $\sigma = (1\ 2\ 3\ 4)(2\ 3\ 4\ 5)(3\ 4\ 5\ 6)$
- 4. $\sigma = (1\ 2\ 3\ 4\ 5)(2\ 3\ 4\ 5\ 6)(1\ 2\ 3\ 4\ 5)^{-1}$

Exercice 2. Pour quelles valeurs de n le groupe symétrique \mathfrak{S}_n est-il *abélien*? Même question pour le groupe alterné \mathfrak{A}_n .

Exercice 3. Montrer que pour tout $n \geq 3$, le groupe alterné \mathfrak{A}_n est engendré par les 3-cycles (i.e. toute permutation paire est un produit de 3-cycles).

Exercice 4.

- 1. Soit $\sigma \in \mathfrak{S}_n$. Montrer que σ commute avec toutes les permutations si et seulement si σ commute avec toutes les transpositions.
- 2. Trouver le centre de \mathfrak{S}_n , c'est à dire les permutations qui commutent avec toutes les permutations de \mathfrak{S}_n .

Exercice 5. Déterminer de même le centre de \mathfrak{A}_n . On fera appel à des 3-cycles.

Exercice 6. Montrer que toute permutation de \mathfrak{S}_n est un produit de transpositions du type $(i \ (i+1))$ où $i \in [1, n-1]$.

Exercice 7. Montrer que la transposition $\tau = (1 \ 2)$ et le cycle $\gamma = (1 \ 2 \dots n)$ engendrent \mathfrak{S}_n , c'est à dire que toute permutation de \mathfrak{S}_n est un produit où n'apparaissent que les permutations τ, γ et γ^{-1} .

Exercice 8. Soient $\sigma \in \mathfrak{S}_n$ et $\gamma = (x_1 \ldots x_k)$ un cycle de longueur k.

- 1. Montrer que $\sigma \gamma \sigma^{-1}$ est un cycle que l'on déterminera.
- 2. Application: calculer (1 2 3 4 5)(2 3 4 5 6)(5 4 3 2 1).
- 3. Inversement, soient γ et γ' deux cycles de même longueur k dans \mathfrak{S}_n . Existe-t-il $\sigma \in \mathfrak{S}_n$ telle que $\gamma' = \sigma \gamma \sigma^{-1}$?

Exercice 9. Soit (G, \times) un groupe fini de cardinal $n \in \mathbb{N}^*$. Pour tout $g \in G$, on note τ_g l'application $G \longrightarrow G$ définie pour tout $x \in G$ par $\tau_g(x) = gx$.

- 1. Montrer que pour tout $g \in G$, $\tau_q \in \mathfrak{S}(G)$.
- 2. Soit $\tau: G \longrightarrow \mathfrak{S}(G)$ définie par $\tau(g) = \tau_g$. Démontrer que τ est un morphisme injectif de groupes.
- 3. Démontrer le théorème de Cayley : tout groupe fini de cardinal n est isomorphe à un sous-groupe de \mathfrak{S}_n .

Exercice 10. Montrer que les transpositions (1 i), $i \in [2, n]$ engendrent \mathfrak{S}_n .

Exercice 11. Soit $f:(\mathfrak{S}_n,\circ)\longrightarrow (\mathbb{C}^*,\times)$ un morphisme de groupes.

1. Soit τ une transposition. Que vaut $f(\tau)$?

- 2. Soient τ, τ' deux transpositions. Montrer qu'il existe $\sigma \in \mathfrak{S}_n$ telle que $\tau' = \sigma \tau \sigma^{-1}$.
- 3. En déduire que toutes les transpositions ont même image par f.
- 4. Déterminer f.

Exercice 12. Soit $n \geq 2$. Soit $\gamma = (1 \ 2 \dots n)$. Déterminer toutes les permutations $\sigma \in \mathfrak{S}_n$ qui commutent avec γ .

Exercice 13. Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 8 & 9 & 4 & 5 & 2 & 1 & 6 \end{pmatrix}$$
. Calculer σ^{2025} .

Exercice 14. Soient γ et γ' deux cycles de \mathfrak{S}_n .

- 1. On suppose que γ et γ' commutent. Montrer que les supports de γ et γ' sont soit égaux, soit disjoints.
- 2. Étudier la réciproque.