Exercice 1. Étudier la fonction f définie par $f(x) = x^{x-x^2}$.

f(x) étant défini par un exposant variable, on a précisément $f(x) = e^{(x-x^2)\ln x}$. La fonction f est donc définie sur \mathbb{R}_+^* . Elle est de classe \mathcal{C}^{∞} sur cet intervalle et on a pour tout x > 0,

$$f'(x) = x^{x-x^2} \left((1-2x) \ln x + 1 - x \right)$$

Le signe de la dérivée est non évident. Dans ce cas, fréquent lors de l'étude d'une fonction non triviale, on est amené à étudier une fonction auxiliaire. Écrivons, pour tout $x \neq \frac{1}{2}$,

$$f'(x) = x^{x-x^2}(1-2x)\varphi(x)$$

οù

$$\varphi(x) = \ln x + \frac{1 - x}{1 - 2x}$$

En isolant le logarithme on s'assure que la dérivée de φ est « simple ». Pour tout x>0 différent de $\frac{1}{2}$, on a

$$\varphi'(x) = \frac{1}{x} + \frac{-(1-2x) + 2(1-x)}{(1-2x)^2} = \frac{4x^2 - 3x + 1}{(1-2x)^3} > 0$$

car le discriminant du numérateur est -7 < 0. On en déduit que φ croît strictement sur $]0, \frac{1}{2}[$ et $]\frac{1}{2}, +\infty[$. Par le TVI et la monotonie stricte, on voit que φ s'annule en un unique réel α sur $]0, \frac{1}{2}[$ et un unique réel β sur $]\frac{1}{2}, +\infty[$. Mystère pour la valeur de α . En revanche, β est a posteriori évident. En effet, $\varphi(1) = 0$, donc $\beta = 1$. On en déduit le tableau de variations de f (voir plus loin pour les valeurs des limites).

x	()	α		1		$+\infty$
f'(x)		_	0	+	0	_	
f(x)		1	$f(\alpha)$		1		→ ₀

Il reste à étudier f en 0 et $+\infty$.

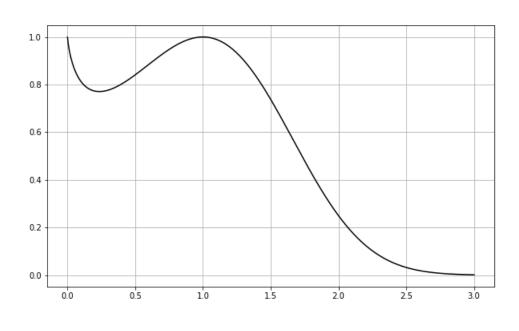
• En 0, $(x - x^2) \ln x \sim x \ln x \to 0$. Ainsi, $f(x) \to 1$ lorsque $x \to 0$. Prolongeons f par continuité en posant f(0) = 1. Le prolongement est-il dérivable? On forme pour cela des taux d'accroissement. Pour x > 0,

$$\frac{f(x) - f(0)}{x - 0} = \frac{f(x) - 1}{x} \sim_0 (1 - x) \ln x \to -\infty$$

lorsque x tend vers 0. La courbe de f admet donc une tangente verticale au point (0,1).

• En $+\infty$, $(x-x^2) \ln x \sim -x^2 \ln x \to -\infty$. Ainsi, $f(x) \to 0$. La courbe de f a donc une asymptote horizontale, la droite d'équation Y = 0. De plus, comme f décroît au voisinage de $+\infty$, la courbe est au-dessus de l'asymptote.

Il ne reste qu'à tracer la courbe.



Exercice 2. Étudier la fonction f définie par $f(x) = (x+2)e^{\frac{1}{x}}$.

La fonction f est définie sur \mathbb{R}^* . Elle est de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^* et sur \mathbb{R}_{+}^* . On a pour tout $x \neq 0$,

$$f'(x) = \frac{1}{x^2}(x-2)(x+1)e^{\frac{1}{x}}$$

Les variations de f sont donc évidentes. Les limites aux points remarquables ne posent quant à elles pas de problème.

x	$-\infty$	-1	()	2	+∞
f'(x)		+ 0	_	_	0	+
f(x)	$-\infty$	$\frac{1}{e}$	0	$+\infty$	$4\sqrt{e}$	+∞

Il reste à étudier f en $\pm \infty$ et à gauche de 0.

• Lorsque x tend vers $\pm \infty$, $\frac{1}{x}$ tend vers 0. On a donc, en faisant un développement limité à l'ordre 2 de $e^{1/x}$,

$$f(x) = (x+2)e^{\frac{1}{x}}$$

$$= (x+2)(1+\frac{1}{x}+\frac{1}{2x^2}+o(\frac{1}{x^2}))$$

$$= x+3+\frac{5}{2x}+o(\frac{1}{x})$$

Ainsi, la courbe admet pour asymptote en $\pm \infty$ la droite d'équation Y = X + 3. De plus, au voisinage de $\pm \infty$,

$$f(x) - (x+3) \sim \frac{5}{2x}$$

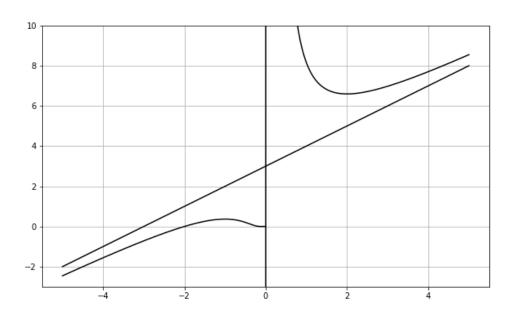
ce qui donne la position de la courbe par rapport à l'asymptote. Au voisinage de $-\infty$, la courbe est sous l'asymptote. Au voisinage de $+\infty$ elle est au-dessus de l'asymptote.

• Lorsque x tend vers $0, x < 0, \frac{1}{x}$ tend vers $-\infty$. Posons $t = -\frac{1}{x}$, de sorte que $t \to +\infty$. On a

$$\frac{f(x) - 0}{x - 0} = -t\left(-\frac{1}{t} + 2\right)e^{-t} = (1 - 2t)e^{-t}$$

et cette quantité tend vers 0 lorsque t tend vers $+\infty$. La courbe à donc une demi-tangente horizontale à gauche au point (0,0).

Traçons la courbe.



Exercice 3. Étudier la fonction f définie par $f(x) = \exp \frac{x^2}{x^2 - 1}$.

La fonction f est définie sur $\mathbb{R} \setminus \{\pm 1\}$. Elle est de classe \mathcal{C}^{∞} sur $]-\infty,-1[,]-1,1[$ et $]1,+\infty[$. On a pour tout $x \neq \pm 1,$

$$f'(x) = -\frac{2x}{(x^2 - 1)^2} f(x)$$

qui est donc du signe opposé de celui de x. On en déduit les variations de f (les limites sont évidentes). La fonction f étant paire, il suffit de l'étudier sur \mathbb{R}_+ . Mais je trace quand même ici son tableau de variations sur \mathbb{R} . Pourquoi ? Regardez ce tableau : il a l'air « symétrique ». Normal, vu que f est paire. Si vous voyez un tel tableau dites vous toujours : « N'ai-je pas raté quelque chose ? »

x	$-\infty$ -	-1	0	1	+∞
f'(x)	+	+	0	_	_
f(x)	e $+\infty$	0	1	0	$+\infty$ e

Il reste à étudier f en 0 et $+\infty$.

- On a $f(x) \to +\infty$ lorsque $x \to 1, x > 1$. La courbe de f a donc une asymptote verticale, la droite d'équation X = 1.
- On a $f(x) \to 0$ lorsque $x \to 1, x < 1$. La fonction f peut donc être prolongée par continuité à gauche de 1 en posant f(1) = 0. Le prolongement est-il dérivable? Pour tout x < 1 proche de 1, posons x = 1 h de sorte que $h \to 0, h > 0$. Il vient

$$\frac{f(x) - f(1)}{x - 1} = -\frac{1}{h} \exp \frac{-(1 - h)^2}{h(2 - h)}$$

On a

$$\begin{split} \frac{-(1-h)^2}{h(2-h)} &= -\frac{1}{2h} \frac{1-2h+o(h)}{1-\frac{h}{2}} \\ &= -\frac{1}{2h} (1-2h+o(h))(1+\frac{h}{2}+o(h)) \\ &= -\frac{1}{2h} (1-\frac{3}{2}h+o(h)) \\ &= -\frac{1}{2h} + \frac{3}{4} + o(1) \end{split}$$

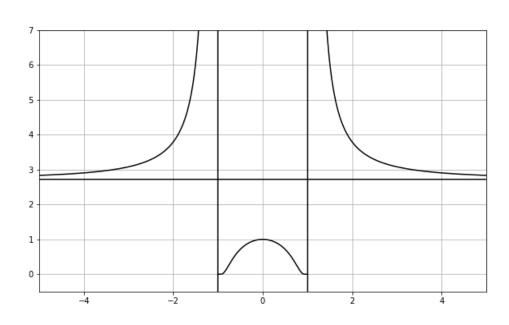
Posons $h = \frac{1}{t}$ de sorte que $t \to +\infty$ lorsque $h \to 0, h > 0$. Il vient

$$\frac{f(x) - f(1)}{x - 1} = -te^{-\frac{t}{2}}e^{\frac{3}{4} + o(1)}$$

qui tend vers 0 lorsque t tend vers $+\infty$. Ainsi, le prolongement de f en 1 est dérivable, de dérivée nulle. La courbe a une demi-tangente horizontale en 1, à gauche.

• En $+\infty$, $f(x) \to e$. La courbe de f a donc une asymptote horizontale, la droite d'équation Y = e. De plus, comme f décroît au voisinage de $+\infty$, la courbe est au-dessus de l'asymptote.

Voici la courbe.



Exercice 4. Étudier la fonction f définie par $f(x) = \sqrt[3]{x^3 + x - 2}$. Étudier aussi la concavité.

La fonction f est continue sur \mathbb{R} . Elle est de classe \mathcal{C}^{∞} sur tout intervalle où x^3+x-2 ne s'annule

pas. Comme

$$x^{3} + x - 2 = (x - 1)(x^{2} + x + 2)$$

f est de classe \mathcal{C}^{∞} sur $]-\infty,1[$ et sur $]1,+\infty[$.

On a pour tout $x \neq 1$,

$$f'(x) = \frac{3x^2 + 1}{3(x^3 + x - 2)^{\frac{2}{3}}} > 0$$

Ainsi, f croît strictement sur \mathbb{R} . Il reste à étudier f en $\pm \infty$ et en 1.

• On a pour tout $x \neq 0$,

$$f(x) = x(1+u)^{\frac{1}{3}}$$

où $u=\frac{1}{x^2}-\frac{2}{x^3}$ tend vers 0 lorsque $x\to\pm\infty.$ Faisons un développement asymptotique :

$$f(x) = x(1 + \frac{1}{3}u + o(u)) = x(1 + \frac{1}{3}u + o(\frac{1}{x^2}))$$

En effet, comme u est de l'ordre de $\frac{1}{x^2}$, $o(u) = o(\frac{1}{x^2})$. En remplaçant u par sa valeur on obtient

$$f(x) = x(1 + \frac{1}{3}\frac{1}{x^2} + o(\frac{1}{x^2})) = x + \frac{1}{3x} + o(\frac{1}{x})$$

On en déduit que la droite d'équation Y=X est asymptote à la courbe de f au voisinage de $\pm \infty$. De plus, le terme $\frac{1}{3x}$ nous dit que la courbe est au-dessus de son asymptote pour x voisin de $+\infty$, et au-dessous pour x voisin de $-\infty$.

 Pour l'étude en 1, considérons des taux d'accroissement pour examiner la dérivabilité éventuelle de f en 1. On a

$$\frac{f(x) - f(1)}{x - 1} = \frac{(x^2 + x + 2)^{\frac{1}{3}}}{(x - 1)^{\frac{2}{3}}}$$

et cette quantité tend vers $+\infty$ lorsque x tend vers 1. La fonction f n'est donc pas dérivable en 1. Cela dit, la courbe de f a une tangente verticale au point (1,0).

Étudions maintenant la concavité de f. Après un calcul courageux, on obtient pour tout $x \neq 1$,

$$f''(x) = \frac{2}{9} \frac{3x^2 - 18x - 1}{((x-1)(x^2 + x + 2))^{\frac{5}{3}}}$$

Le numérateur change de signe pour

$$x = \frac{9 \pm 2\sqrt{21}}{3}$$

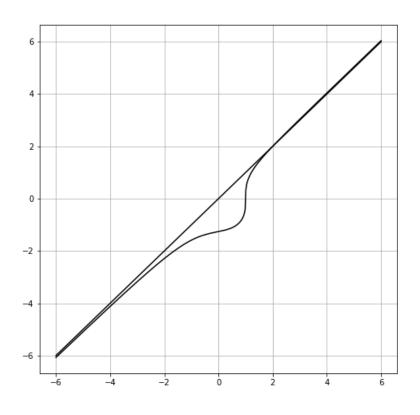
Des valeurs approchées de ces deux réels sont $\alpha \simeq -0.06$ et $\beta \simeq 6.06$. On en déduit le signe de f''.

x	$-\infty$		α		1		β		$+\infty$
f''(x)		_	0	+		_	0	+	

En conclusion:

- Sur $]-\infty,\alpha]$, f est concave (la courbe « tourne » vers la droite).
- Sur $[\alpha, 1]$, f est convexe (la courbe « tourne » vers la gauche).
- Sur $[1, \beta]$, f est concave.
- Sur $[\beta, +\infty[$, f est convexe.

Voici la courbe, hélas tracée automatiquement. La concavité apparaît très mal parce que la courbe est trop près de son asymptote.



Exercice 5. Étudier la fonction f définie par $f(x) = \sqrt{|x^2 - 1|} \arctan x$.

La fonction f est continue sur \mathbb{R} . Elle de classe \mathcal{C}^{∞} sur tout intervalle ne contenant pas ± 1 . Comme f est impaire, on l'étudie sur \mathbb{R}_+ .

On a pour tout $x \in \mathbb{R}_+$,

$$f(x) = \sqrt{\varepsilon(x^2 - 1)} \arctan x$$

où $\varepsilon = -1$ si $0 \le x \le 1$ et $\varepsilon = 1$ si x > 1. Ainsi, pour tout $x \ne 1$,

$$f'(x) = \epsilon \frac{x \arctan x}{\sqrt{|x^2 - 1|}} + \frac{\sqrt{|x^2 - 1|}}{x^2 + 1}$$

Sur $]1, +\infty[$, on a $\varepsilon = 1$ et, clairement, f' > 0. Sur [0, 1[, en revanche la situation est moins claire. Écrivons, pour $x \in]0, 1[$,

$$f'(x) = -\frac{x \arctan x}{\sqrt{1 - x^2}} + \frac{\sqrt{1 - x^2}}{x^2 + 1} = \frac{x}{\sqrt{1 - x^2}} \varphi(x)$$

οù

$$\varphi(x) = \frac{1 - x^2}{x(x^2 + 1)} - \arctan x$$

L'idée est d'isoler l'arc tangente afin qu'il disparaisse par dérivation. En effet,

$$\varphi'(x) = -\frac{5x^2 + 1}{x^2(x^2 + 1)^2}$$

On en déduit que φ décroît strictement sur]0,1]. Or, φ tend vers $+\infty$ en 0 (à droite, je rappelle qu'on est sur \mathbb{R}_+) et $\varphi(1) = -\frac{\pi}{4} < 0$. Par la monotonie stricte et le TVI, φ s'annule en un unique réel $0 < \alpha < 1$. On en déduit le signe de f', puis les variations de f. La limite de f en $+\infty$ est évidente.

x	0		α		1	$+\infty$
f'(x)	1	+	0	_	+	
f(x)	0		$f(\alpha)$		0	+∞

Reste à étudier f en 1 et $+\infty$.

• Commençons par examiner la dérivabilité de f en 1. On pour tout $x \neq 1$ voisin de 1,

$$\frac{f(x) - f(1)}{x - 1} = \frac{\sqrt{|x - 1|(x + 1)} \arctan x}{x - 1}$$
$$\sim_1 \sqrt{2} \frac{\pi}{4} \frac{\sqrt{|x - 1|}}{x - 1}$$

Cette quantité tend vers $-\infty$ lorsque x tend vers 1, x < 1, et vers $+\infty$ lorsque x tend vers 1, x > 1. La fonction f n'est donc pas dérivable en 1. Cependant, la courbe de f admet une tangente verticale au point (1,0).

 \bullet Passons à l'étude en $+\infty$. Un rapide coup d'oeil montre que

$$f(x) \sim_{+\infty} \frac{\pi}{2} x$$

Nous avons donc l'espoir d'une asymptote. Faisons un développement asymptotique de f au voisinage de $+\infty$. On a, pour tout x assez grand,

$$f(x) = \sqrt{x^2 - 1} \arctan x$$
$$= x \left(1 - \frac{1}{x^2}\right)^{\frac{1}{2}} \left(\frac{\pi}{2} - \arctan \frac{1}{x}\right)$$

Posons $t=\frac{1}{x},$ de sorte que t>0 et $t\to 0$ lorsque x tend vers $+\infty.$ On a

$$\left(1 - \frac{1}{x^2}\right)^{\frac{1}{2}} \left(\frac{\pi}{2} - \arctan\frac{1}{x}\right) = \left(1 - t^2\right)^{\frac{1}{2}} \left(\frac{\pi}{2} - \arctan t\right)
= \left(1 - \frac{1}{2}t^2 + o(t^2)\right) \left(\frac{\pi}{2} - t + o(t^2)\right)
= \frac{\pi}{2} - t - \frac{\pi}{4}t^2 + o(t^2)
= \frac{\pi}{2} - \frac{1}{r} - \frac{\pi}{4}\frac{1}{r^2} + o\left(\frac{1}{r^2}\right)$$

De là, en multipliant par x,

$$f(x) = \frac{\pi}{2}x - 1 - \frac{\pi}{4x} + o(\frac{1}{x})$$

Ainsi, la courbe de f admet la droite d'équation $Y = \frac{\pi}{2}X - 1$ pour asymptote en $+\infty$. De plus,

$$f(x) - (\frac{\pi}{2}x - 1) \sim_{+\infty} -\frac{\pi}{4x} < 0$$

et donc la courbe est au-dessous de son asymptote au voisinage de $+\infty$.

Voici la courbe.

