Dans chacun des exercices ci-dessous, f est une fonction à valeurs réelles et a est un nombre réel. On considère la suite $(u_n)_{n\geq 0}$ définie par $u_0=a$ et, pour tout $n\in\mathbb{N},$ $u_{n+1}=f(u_n)$.

Dans chacun des exercices, on dessinera la courbe de la fonction f et la droite d'équation y = x.

Exercice 1. On pose, pour tout $x \in \mathbb{R}$,

$$f(x) = 2(x - x^2)$$

- 1. On pose pour tout $n \in \mathbb{N}$, $v_n = u_n \frac{1}{2}$. Déterminer v_{n+1} en fonction de v_n .
- 2. En déduire v_n en fonction de n, puis u_n en fonction de n.
- 3. Déterminer la limite éventuelle de u_n lorsque n tend vers l'infini. On discutera selon les valeurs de a.

Exercice 2. On suppose $a \in [0,1]$. On pose pour tout $x \in \mathbb{R}$,

$$f(x) = \sin x$$

- 1. Étudier le signe de la fonction $g: x \mapsto f(x) x$.
- 2. Montrer que si u converge, sa limite est 0.
- 3. Montrer que pour tout $n \in \mathbb{N}$, $u_n \in [0, 1]$.
- 4. Montrer que u est décroissante. En déduire que u converge.
- 5. On suppose maintenant que $a \in \mathbb{R}$. Comment peut-on se ramener à ce qui précède?

Exercice 3. On pose, pour tout $x \in \mathbb{R}$, $f(x) = \cos x$.

- 1. Montrer que pour tout $n \geq 2$, $u_n \in [0,1]$.
- 2. Montrer qu'il existe un unique réel ℓ tel que $\cos \ell = \ell$. Montrer de plus que $0 < \ell < 1$.
- 3. Montrer que si la suite u converge, sa limite est ℓ .
- 4. Montrer que pour tous $x, y \in \mathbb{R}$,

$$|\cos x - \cos y| \le \left|\sin \frac{x+y}{2}\right| |x-y|$$

5. En déduire que pour tout $n \geq 2$,

$$|u_{n+1} - \ell| \le K|u_n - \ell|$$

où $K = \sin 1$.

6. Montrer que la suite u converge vers ℓ .