Déterminer $\left\{z \in \mathbb{C}, \frac{z+1}{z-1} \in i\mathbb{R}\right\}$.

Déterminer les nombres complexes z tels que les points du plan d'affixes 1, z^2 et Exercice 2. z^3 soient alignés.

Exercice 3. Déterminer les nombres complexes z tels que les points du plan d'affixes 1, z et z^4 soient alignés.

Trouver tous les $z \in \mathbb{C}$ tels que le triangle de sommets d'affixes 1, z et z^2 soit Exercice 4. équilatéral.

Déterminer module et argument de $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{10}$ Exercice 5.

Exercice 6. Soit $z \in \mathbb{C}$ de module 1 et d'argument $\theta \in]-\pi,\pi]$. Déterminer module et argument de 1+z, de 1-z, de $1+z+z^2$. Les arguments donnés devront appartenir à l'intervalle $]-\pi,\pi]$.

Exercice 7. Soient n un entier naturel non nul et ω une racine nième de 1. Calculer :

1.
$$S_1 = \sum_{k=0}^{n-1} \omega^k$$

1.
$$S_1 = \sum_{k=0}^{n-1} \omega^k$$

2. $S_2 = \sum_{k=0}^{n-1} (-1)^k \omega^k$

3.
$$S_3 = \sum_{k=0}^{n-1} (k+1)\omega^k$$

Exercice 8. On pose, pour tout $n \in \mathbb{N}$,

$$S_0 = \sum_{0 \le 3k \le n} \binom{n}{3k}$$

$$S_1 = \sum_{0 \le 3k+1 \le n} \binom{n}{3k+1}$$

$$S_2 = \sum_{0 \le 3k+2 \le n} \binom{n}{3k+2}$$

Calculer S_0 .

Indication: considérer pour cela $(1+1)^n$, $(1+j)^n$ et $(1+j^2)^n$ où 1,j et j^2 sont les racines cubiques de 1.

Exercice 9. Soit $\alpha \in \mathbb{R}$ tel que $\cos \alpha \neq 0$. Soit $n \in \mathbb{N}^*$. Calculer

$$S' = \sum_{k=0}^{n-1} \frac{\cos(k\alpha)}{\cos^k \alpha} \text{ et } S'' = \sum_{k=0}^{n-1} \frac{\sin(k\alpha)}{\cos^k \alpha}$$

Exercice 10. Soient $\alpha, \beta \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer

$$S' = \sum_{k=0}^{n} {n \choose k} \cos(\alpha + k\beta) \text{ et } S'' = \sum_{k=0}^{n} {n \choose k} \sin(\alpha + k\beta)$$

Déterminer les primitives de $x \mapsto \sin^6 x$. Exercice 11.

Trouver les racines carrées de $10 - 4i\sqrt{6}$. Exercice 12.

Résoudre les équations d'inconnue $z \in \mathbb{C}$: Exercice 13.

1.
$$z^2 + (5-2i)z + 5 - 5i = 0$$
.

2.
$$z^8 = \frac{1-i}{\sqrt{3}-i}$$
.

$$3. \ z^4 - 30z^2 + 289 = 0.$$

Exercice 14. Soit $a \in \mathbb{C}$. Soit l'équation d'inconnue $z \in \mathbb{C}$

$$(E) \left(\frac{1+iz}{1-iz}\right)^n = a$$

- 1. On suppose que (E) a une racine réelle. Montrer que |a| = 1.
- 2. On suppose que $a=e^{i\theta}$, où $\theta\in\mathbb{R}$. Calculer les racines de l'équation. On constatera que ces racines sont toutes réelles.

Exercice 15. Trouver tous les nombres complexes z vérifiant

(E)
$$\left(\frac{z+i}{z-i}\right)^3 + \left(\frac{z+i}{z-i}\right)^2 + \frac{z+i}{z-i} + 1 = 0$$

Exercice 16. Soient $a, b \in \mathbb{C}$ tels que $\overline{a}b \neq 1$. On pose

$$c = \frac{a - b}{1 - \overline{a}b}$$

Montrer que |c| = 1 si et seulement si |a| = 1 ou |b| = 1.

Exercice 17. Soit $\theta \in \mathbb{R}$ tel que $\cos \theta \neq 0$. Exprimer $\tan 5\theta$ en fonction de $\tan \theta$.

Exercice 18. Déterminer l'ensemble

$$E = \left\{ z \in \mathbb{C}, \frac{z^2}{z+i} \in i\mathbb{R} \right\}$$

Exercice 19. On considère l'équation d'inconnue $z \in \mathbb{C}$

(E)
$$z^3 + (1-2i)z^2 + (1-i)z - 2i = 0$$

- 1. Trouver les imaginaires purs qui sont solutions de (E).
- 2. Trouver toutes les solutions de (E).

Exercice 20. On considère l'équation d'inconnue $z \in \mathbb{C}$

$$(E) z^4 + 4iz^2 + 12(1+i)z - 45 = 0$$

2

- 1. Trouver les imaginaires purs qui sont solutions de (E).
- 2. Trouver les réels qui sont solutions de (E).
- 3. Trouver toutes les solutions de (E).