MPSI 2024 DM 12

On considère l'équation différentielle

$$(\mathcal{E}) - x^2 y' + 2xy = y^2$$

-I-

 $I =]\alpha, \beta[$ $(0 \le \alpha < \beta \le +\infty)$ désigne un intervalle ouvert inclus dans \mathbb{R}_+^* . On se propose de déterminer les solutions de (\mathcal{E}) sur I qui ne s'annulent pas.

- 1. Soit $f: I \longrightarrow \mathbb{R}$ une fonction dérivable qui ne s'annule pas. On pose $g = \frac{1}{f}$. Montrer que f est solution de (\mathcal{E}) sur I si et seulement si g ne s'annule pas et g est solution sur I d'une équation linéaire (\mathcal{E}') que l'on déterminera.
- 2. Résoudre (\mathcal{E}') sur I.
- 3. En déduire les solutions de (\mathcal{E}) sur I qui ne s'annulent pas.

-II-

Soit f une solution de (\mathcal{E}) sur \mathbb{R}_+^* qui n'est pas pas identiquement nulle (mais qui peut éventuellement s'annuler). Soit a > 0 tel que $f(a) \neq 0$.

1. Montrer qu'il existe un intervalle ouvert J, inclus dans \mathbb{R}_+^* , contenant a et tel que f ne s'annule pas sur J.

On note A l'ensemble de tous les intervalles ouverts J inclus dans \mathbb{R}_+^* , contenant a et tels que f ne s'annule pas sur J. On pose

$$I = \bigcup_{J \in \mathcal{A}} J$$

- 2. Montrer que $I \subset \mathbb{R}_+^*$, $a \in I$ et f ne s'annule pas sur I.
- 3. Montrer que I est un intervalle ouvert.
- 4. Soit $\alpha \geq 0$ la borne inférieure de I. On suppose $\alpha > 0$.
 - (a) En remarquant que f est une solution de (\mathcal{E}) sur I qui ne s'annule pas, montrer que $f(\alpha) \neq 0$.
 - (b) En déduire une contradiction.

Ainsi,
$$I =]0, \beta[$$
, où $0 < \beta \le +\infty$.

5. Par un raisonnement analogue à celui de la question précédente (on ne demande pas de le faire), on peut montrer que $\beta = +\infty$, et donc que $I = \mathbb{R}_+^*$.

Déterminer toutes les solutions de (\mathcal{E}) sur \mathbb{R}_+^* .

- 6. Soient $x_0 \in \mathbb{R}_+^*$ et $y_0 \in \mathbb{R}$. Combien existe-t-il de solutions f de (\mathcal{E}) telles que $f(x_0) = y_0$?
- 7. Dessiner sur un même graphe les courbes des solutions de (\mathcal{E}) sur \mathbb{R}_{+}^{*} .

-III-

On peut de même montrer (ne pas le faire) que les solutions de (\mathcal{E}) sur \mathbb{R}_{-}^* sont la fonction nulle et les fonctions $x \longmapsto \frac{x^2}{x+k}$ où k est un réel négatif ou nul.

- 1. Déterminer toutes les solutions de (\mathcal{E}) sur \mathbb{R} .
- 2. Dessiner sur un même graphe les courbes des solutions de (\mathcal{E}) sur \mathbb{R} .