MPSI 2024 DM 05

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par récurrence par $u_0=v_0=1$ et pour tout $n\in\mathbb{N}$,

$$\begin{cases} u_{n+1} = u_n + v_n \\ v_{n+1} = u_n \times v_n \end{cases}$$

-I-

- 1. Démontrer que pour tout $n \in \mathbb{N}$, u_n et v_n sont des entiers naturels non nuls.
- 2. Montrer que les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 1}$ sont strictement croissantes. En déduire que ces deux suites tendent vers $+\infty$ lorsque n tend vers l'infini.
- 3. Montrer que $\frac{u_n}{v_n}$ tend vers 0 lorsque n tend vers l'infini. En déduire que $u_n \sim v_{n-1}$.
- 4. Prouver que, pour tout $n \ge 1$,

$$v_n = \prod_{k=0}^{n-1} u_k$$

En déduire que pour tout $n \geq 2$,

$$u_n \ge \prod_{k=0}^{n-2} u_k$$

- 5. On note $\varphi=\frac{1+\sqrt{5}}{2}$ et $\overline{\varphi}=\frac{1-\sqrt{5}}{2}$ les racines de l'équation $x^2=x+1$.
 - (a) Montrer que pour tout $n\in\mathbb{N},$ $\varphi^n+\varphi^{n+1}=\varphi^{n+2}.$ Énoncer une propriété analogue pour $\overline{\varphi}.$
 - (b) Prouver que $\varphi \leq \frac{9}{5}$.
 - (c) Montrer l'existence de quatre entiers a, b, c, d tels que

$$\begin{cases} \varphi^2 = a + b\varphi \\ \varphi^3 = c + d\varphi \end{cases}$$

On calculera explicitement ces entiers. En déduire un majorant entier de φ^2 et un majorant entier de φ^3 .

(d) Démontrer que pour tout $n \geq 3$,

$$u_n \ge \left(\frac{4}{3}\right)^{\varphi^{n-1}}$$
 et $v_n \ge \left(\frac{4}{3}\right)^{\varphi^n}$

-II-

On note, pour tout $n \in \mathbb{N}$,

$$w_n = \ln v_n$$

$$\alpha_n = \frac{u_n}{v_n}$$

$$\beta_n = \ln(1 + \alpha_n)$$

1. Démontrer que pour tout $n \geq 2, w_n = w_{n-1} + w_{n-2} + \beta_{n-2}$.

2. Prouver que pour tout $n \geq 4$,

$$\beta_n \le \alpha_n \le \frac{2}{u_{n-1}}$$

3. On définit par récurrence la suite $(F_n)_{n\geq 0}$ par $F_0=F_1=1$, et pour tout $n\geq 2$,

$$F_n = F_{n-1} + F_{n-2}$$

(a) Démontrer que, pour tout entier naturel $n \geq 2$,

$$\varphi^n = F_{n-2} + F_{n-1}\varphi$$

Énoncer une propriété analogue pour $\overline{\varphi}$.

- (b) Déduire de la question précédente une expression simple de F_n en fonction de n.
- 4. En considérant la somme $\sum_{k=2}^n w_k F_{n-k}$, démontrer que pour tout $n \geq 2$,

$$w_n = \sum_{k=0}^{n-2} \beta_k F_{n-2-k}$$

5. En déduire l'existence de deux réels a et b indépendants de n, que l'on calculera, tels que pour tout entier $n \geq 2$,

$$w_n = a\varphi^{n-1} \sum_{k=0}^{n-2} \frac{\beta_k}{\varphi^k} + b\overline{\varphi}^{n-1} \sum_{k=0}^{n-2} \frac{\beta_k}{\overline{\varphi}^k}$$

-III-

On pose pour tout $n \geq 2$,

$$S_n = \sum_{k=0}^{n-2} \frac{\beta_k}{\varphi^k}$$
 et $T_n = \sum_{k=0}^{n-2} \frac{\beta_k}{\overline{\varphi}^k}$

- 1. (a) Démontrer que la suite $(S_n)_{n\geq 2}$ est majorée. On pourra majorer, pour tout entier k assez grand, la quantité $\frac{\beta_k}{\omega^k}$ par le terme général d'une suite géométrique.
 - (b) En déduire que la suite $(S_n)_{n\geq 2}$ est convergente. On note S sa limite.
- 2. Soient n et p deux entiers naturels vérifiant $5 \le n < p$.
 - (a) Démontrer que

$$0 \le S_p - S_n \le \frac{2}{u_{n-2}} \sum_{k=n-1}^{p-2} \frac{1}{\varphi^k}$$

- (b) En déduire une majoration de $S-S_n$ en fonction de u_{n-2} , n et φ .
- (c) Prouver que $S_n = S + o\left(\frac{1}{\varphi^n}\right)$.
- 3. (a) Démontrer que, pour tout entier k suffisamment grand,

$$\left(\frac{4}{3}\right)^{\varphi^{k-2}} \left| \overline{\varphi}^k \right| \ge 2^k$$

(b) En déduire que, pour tout entier k suffisamment grand,

$$\left| \frac{\beta_k}{\overline{\varphi}^k} \right| \le \frac{2}{2^k}$$

- (c) Déduire de la question précédente que la suite $(T_n)_{n\geq 2}$ est bornée. On ne cherchera pas à prouver la convergence de cette suite.
- 4. Déterminer, en fonction de S, φ et n, un équivalent simple de v_n lorsque n tend vers l'infini.